The emergence of Escherichia coli resistant to extended-spectrum cephalosporins (ESCs) is of concern as ESC is often used to treat infections by Gram-negative bacteria. One-hundred and ten E. coli strains isolated in 2009-2010 from children warded in a Malaysian tertiary hospital were analyzed for their antibiograms, carriage of extended-spectrum beta-lactamase (ESBL) and AmpC genes, possible inclusion of the beta-lactamase genes on an integron platform, and their genetic relatedness. All E. coli strains were sensitive to carbapenems. About 46% of strains were multidrug resistant (MDR; i.e., resistant to ≥3 antibiotic classes) and almost half (45%) were nonsusceptible to ESCs. Among the MDR strains, high resistance rates were observed for ampicillin (98%), tetracycline (75%), and trimethoprim/sulfamethoxazole (73%). Out of 110 strains, bla(TEM-1) (49.1%), bla(CTX-M) (11.8%), and bla(CMY-2) (6.4%) were detected. Twenty-one strains were ESBL producers. CTX-M-15 was the predominant CTX-M variant found and this is the first report of a CTX-M-27-producing E. coli strain from Malaysia. Majority (3.1%) of the strains harbored class 1 integron-encoded integrases with a predominance of aadA and dfr genes within the integron variable region. No gene cassette encoding ESBL genes was found and integrons were not significantly associated with ESBL or non-ESBL producers. Possible clonal expansion was observed for few CTX-M-15-positive strains but the O25-ST131 E. coli clone known to harbor CTX-M-15 was not detected while CMY-2-positive strains were genetically diverse.
BackgroundPostweaning diarrhea caused by pathogenic Escherichia coli, in particular verotoxigenic E. coli (VTEC), has caused significant economic losses in the pig farming industry worldwide. However, there is limited information on VTEC in Malaysia. The objective of this study was to characterize pathogenic E. coli isolated from post-weaning piglets and growers with respect to their antibiograms, carriage of extended-spectrum beta-lactamases, pathotypes, production of hemolysins and fimbrial adhesins, serotypes, and genotypes.ResultsPCR detection of virulence factors associated with different E. coli pathotypes (ETEC, EPEC, EHEC, and VTEC) revealed that VTEC was the only pathotype identified from six swine farms located at north-western Peninsular Malaysia. A low prevalence rate of VTEC was found among the swine samples (n = 7/345) and all 7 VTEC isolates were multidrug resistant. Five of these isolates from different hosts raised in the same pen were likely to be of the same clone as they shared identical sero-pathotypes (O139:H1, VT2e/α-hly/F18), resistance profiles and DNA fingerprinting profiles. Two other serotypes, O130: H26 (n = 1) and O168: H21 (n = 1) carrying virulence factors were also identified. O168: H21 is possibly a new serotype as this has not been previously reported.ConclusionsThe occurrence of VTEC with infrequently encountered serotypes that are multidrug resistant and harbouring virulence factors may be of public health concern. The detection of possible clones in this study also showed that the combination of different typing tools including phenotyping and genotyping methods is useful for molecular epidemiologic surveillance and studies.
BACKGROUND: The objectives of the present study were to determine the antimicrobial resistance, virulotypes and genetic diversity of Yersinia enterocolitica isolated from uncooked porcine food and live pigs in Malaysia.
Y. enterocolitica and Y. pseudotuberculosis are important food borne pathogens. However, the presence of competitive microbiota makes the isolation of Y. enterocolitica and Y. pseudotuberculosis from naturally contaminated foods difficult. We attempted to evaluate the performance of a modified Cefsulodin-Irgasan-Novobiocin (CIN) agar in the differentiation of Y. enterocolitica from non-Yersinia species, particularly the natural intestinal microbiota. The modified CIN enabled the growth of Y. enterocolitica colonies with the same efficiency as CIN and Luria-Bertani agar. The detection limits of the modified CIN for Y. enterocolitica in culture medium (10 cfu/ml) and in artificially contaminated pork (104 cfu/ml) were also comparable to those of CIN. However, the modified CIN provided a better discrimination of Yersinia colonies from other bacteria exhibiting Yersinia-like colonies on CIN (H2S-producing Citrobacter freundii, C. braakii, Enterobacter cloacae, Aeromonas hydrophila, Providencia rettgeri, and Morganella morganii). The modified CIN exhibited a higher recovery rate of Y. enterocolitica from artificially prepared bacterial cultures and naturally contaminated samples compared with CIN. Our results thus demonstrated that the use of modified CIN may be a valuable means to increase the recovery rate of food borne Yersinia from natural samples, which are usually contaminated by multiple types of bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.