Cell death plays an important role in cancer growth and progression, as well as in the efficiency of chemotherapy. Although apoptosis is commonly regarded as the principal mechanism of programmed cell death, it has been increasingly reported that several anticancer agents do not only induce apoptosis but other forms of cell death such as necrosis, autophagy and mitotic catastrophe, as well as the state of permanent loss of proliferative capacity known as senescence. A deeper understanding of what we know about chemotherapy-induced death is rather relevant considering the emerging knowledge of non-apoptotic cell death signaling pathways, and the fact that many tumors have the apoptosis pathway seriously compromised. In this review we examine the effects that various anti-cancer agents have on pathways involved in the different cell death outcomes. Novel and specific anti-cancer agents directed toward members of the cell death signaling pathways are being developed and currently being tested in clinical trials. If we precisely activate or inhibit molecules that mediate the diversity of cell death outcomes, we might succeed in more effective and less toxic chemotherapy.
Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we have now quantitatively compared the cellular activity (in the pLuc705 HeLa cell splice correction system) of PNA antisense oligomers using lipoplex delivery of cholesterol- and bisphosphonate-PNA conjugates, polyplex delivery via a PNA-polyethyleneimine conjugate and CPP delivery via a PNA-octaarginine conjugate upon varying the cell culture transfection volume (and cell density) at fixed PNA concentration. The results show that for all delivery modalities the cellular antisense activity increases (less than proportionally) with increasing volume (in some cases accompanied with increased toxicity), and that this effect is more pronounced at higher cell densities. These results emphasize that transfection efficacy using cationic carriers is critically dependent on parameters such as transfection volume and cell density, and that these must be taken into account when comparing different delivery regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.