In recent years, the software industry has invested substantial effort to improve software quality in organizations. Applying proactive software defect prediction will help developers and white box testers to find the defects earlier, and this will reduce the time and effort. Traditional software defect prediction models concentrate on traditional features of source code including code complexity, lines of code, etc. However, these features fail to extract the semantics of source code. In this research, we propose a hybrid model that is called CBIL. CBIL can predict the defective areas of source code. It extracts Abstract Syntax Tree (AST) tokens as vectors from source code. Mapping and word embedding turn integer vectors into dense vectors. Then, Convolutional Neural Network (CNN) extracts the semantics of AST tokens. After that, Bidirectional Long Short-Term Memory (Bi-LSTM) keeps key features and ignores other features in order to enhance the accuracy of software defect prediction. The proposed model CBIL is evaluated on a sample of seven open-source Java projects of the PROMISE dataset. CBIL is evaluated by applying the following evaluation metrics: F-measure and area under the curve (AUC). The results display that CBIL model improves the average of F-measure by 25% compared to CNN, as CNN accomplishes the top performance among the selected baseline models. In average of AUC, CBIL model improves AUC by 18% compared to Recurrent Neural Network (RNN), as RNN accomplishes the top performance among the selected baseline models used in the experiments.
Big data has become famous to process, store and manage massive volumes of data. Clustering is an essential phase in big data analysis for many real-life application areas uses clustering methodology for result analysis. The data clustered sets have become a challenging issue in the field of big data analytics. Among all clustering algorithm, the K-means algorithm is the most widely used unsupervised clustering approach as seen from past. The K-means algorithm is the best adapted for deciding similarities between objects based on distance measures with small datasets. Existing clustering algorithms require scalable solutions to manage large datasets. However, for a particular domain-specific problem the initial selection of K is still a significant concern. In this paper, an optimized clustering approach presented which is calculated the optimal number of clusters (k) for specific domain problems. The proposed approach is an optimal solution based on the cluster performance measure analysis based on gab statistic. By observation, the experimental results prove that the proposed model can efficiently enhance the speed of the clustering process and accuracy by reducing the computational complexity of the standard k-means algorithm which achieves 76.3%.
The one constant in the world is change. The changing dynamics of business environment enforces the organizations to re-design or reengineer their business processes. The main objective of such reengineering processes is to provide services or produce products with the possible lowest cost, shortest time, and best quality. Accordingly, Business Process Re-engineering (BPR) provides a roadmap of how to efficiently achieve the operational goals in terms of enhanced flexibility and productivity, reduced cost, and improved quality of service or product. In this article, we propose an efficient model for BPR. The model specifies where the breakdowns occur in BPR implementation, justifies why such breakdowns occur, and proposes techniques to prevent their occurrence again. The proposed model has been built based on two main sections. The first section focuses on integrating Critical Success Factors (CSFs) and the performance of business processes during the reengineering processes. Additionally, it implements the association rule mining technique to investigate the relationship between CSFs and different business processes. The second section aims to measure the performance of business processes (intended success of BPR) by process time, cycle time, quality and cost before and after reengineering processes. A case study of the Egyptian Tax Authority (ETA) is used to test the efficiency of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.