Machine vision is increasingly replacing manual steel surface inspection. The automatic inspection of steel surface defects makes it possible to ensure the quality of products in the steel industry with high accuracy. However, the optimization of inspection time presents a great challenge for the integration of machine vision in high-speed production lines. In this context, compressing the collected images before transmission is essential to save bandwidth and energy, and improve the latency of vision applications. The aim of this paper was to study the impact of quality degradation resulting from image compression on the classification performance of steel surface defects with a CNN. Image compression was applied to the Northeastern University (NEU) surface-defect database with various compression ratios. Three different models were trained and tested with these images to classify surface defects using three different approaches. The obtained results showed that trained and tested models on the same compression qualities maintained approximately the same classification performance for all used compression grades. In addition, the findings clearly indicated that the classification efficiency was affected when the training and test datasets were compressed using different parameters. This impact was more obvious when there was a large difference between these compression parameters, and for models that achieved very high accuracy. Finally, it was found that compression-based data augmentation significantly increased the classification precision to perfect scores (98–100%), and thus improved the generalization of models when tested on different compression qualities. The importance of this work lies in exploiting the obtained results to successfully integrate image compression into machine vision systems, and as appropriately as possible.
The need for adopting Cloud Computing in Morocco and the experience ongoing of VCL implementation at Abdelmalek Essaadi University are described in this paper. Students, Faculty and administrative staff can take great benefits from on-demand, flexible and real time services, provided by the IBM Cloud Computing initiative VCL. The installation process and configuration of VCL are ongoing. The next goal planed after completion is to export this experience to other Universities, and contribute accordingly to the establishment of Smarter Education in Morocco.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.