An ultracompact silicon electro-optic modulator was experimentally demonstrated based on silicon photonic crystal (PhC) waveguides for the first time to our knowledge. Modulation operation was demonstrated by carrier injection into an 80μm-long silicon PhC waveguide of a Mach-Zehnder interferometer (MZI) structure. The π phase shift driving current, Iπ, across the active region is as low as 0.15mA, which is equivalent to a Vπ of 7.5mV when a 50Ω impedance-matched structure is applied. The modulation depth is 92% operating at 1567nm.
A high speed compact silicon modulator is experimentally demonstrated to work at a low driving voltage desirable for on-chip applications. As carrier injection is the only practical option for optical modulation in silicon, a lower limit of current density ͑ϳ10 4 A/cm 2 ͒ exists for achieving gigahertz modulation in the p-in diode configuration. Exploiting the slow group velocity of light in photonic crystal waveguides, the interaction length of this Mach-Zehnder interferometer-type silicon modulator is reduced significantly compared to conventional modulators. The required high current density is achieved with a low voltage ͑2 V͒ by scaling down the interaction length to 80 m.
AMAD, an emodin azide methyl anthraquinone derivative, was extracted from the nature giant knotweed rhizome of traditional Chinese herbs. Here, we investigated the anticancer activities and signaling pathways implicated in AMAD-induced apoptosis in human breast cancer cell lines MDA-MB-453 and human lung adenocarcinoma Calu-3 cells. AMAD was found to have a potent cytotoxic effect on both cell lines. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V -positive cells in a dose-dependent manner, respectively. Moreover, this apoptotic induction was associated with a collapse of the mitochondrial membrane potential and activated caspases (cysteine aspartase) cascade involving in caspase-8, caspase-9, caspase-3, and poly(ADP-ribose) polymerase cleavage in a concentration-dependent manner. It was noteworthy that AMAD also effectively cleaved Bid, a BH3 domaincontaining proapoptotic Bcl-2 family member, and induced the subsequent release of cytochrome c from mitochondria into the cytosol. Furthermore, suppression of caspase-8 activity with Z
DNA topoisomerase I (Top1) is an essential nuclear enzyme and a validated target for anticancer agent screening. In a previous study, we found that indolizinoquinoline-5,12-dione derivatives show significant biological activity against several human cancer cell lines. To understand their mechanism of inhibition of cancer cell growth, one indolizinoquinoline-5,12-dione derivative, CY13II, was further studied as lead. Our present results indicate that CY13II shows more potent antiproliferative activity against K562 cells than camptothecin. Additionally, K562 cells were arrested in G2/M and their growth rate decreased after treatment with CY13II at micromolar concentration. Biochemical Top1 assays indicate that CY13II exhibits a different inhibitory mechanism from camptothecin. Unlike camptothecin, CY13II specifically inhibits the catalytic cleavage activity of Top1 instead of forming drug-enzyme-DNA covalent ternary complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.