The combination of polymerization–induced self-assembly (PISA) and reversible–addition fragmentation chain transfer (RAFT) emulsion polymerization offers a powerful technique to synthesize diblock copolymers and polymeric nanoparticles in a controlled manner. The RAFT emulsion diblock copolymerization of styrene and methacrylic acid (MAA) by using a trithiocarbonate as surfactant and RAFT agent was investigated. The Z-group of the RAFT agent was modified with a propyl-, butyl- and dodecyl- sidechain, increasing the hydrophobicity of the RAFT agent to offer well-controlled polymerization of poly(methacrylic acid)-block-polystyrene (PMAA-b-PS) diblock copolymers at high solid contents between 30–50 wt% in water. The kinetic data of the PMAA homopolymerization with the three different RAFT agents for various solvents was investigated as well as the RAFT emulsion polymerization of the diblock copolymers in pure water. While the polymerization of PMAA-b-PS with a propyl terminus as a Z-group suffered from slow polymerization rates at solid contents above 30 wt%, the polymerization with a dodecyl sidechain as a Z-group led to full conversion within 2 h, narrow molar mass distributions and all that at a remarkable solid content of up to 50 wt%.
Goethite is a naturally anisotropic, antiferromagnetic iron oxide. Following its atomic structure, crystals grow into a fine needle shape that has interesting properties in a magnetic field. The needles align parallel to weak magnetic fields and perpendicular when subjected to high fields. We synthesized goethite nanorods with lengths between 200 nm and 650 nm in a two-step process. In a first step we synthesized precursor particles made of akaganeite (β-FeOOH) rods from iron(III)chloride. The precursors were then treated in a hydrothermal reactor under alkaline conditions with NaOH and polyvinylpyrrolidone (PVP) to form goethite needles. The aspect ratio was tunable between 8 and 15, based on the conditions during hydrothermal treatment. The orientation of these particles in a magnetic field was investigated by small angle X-ray scattering (SAXS). We observed that the field strength required to trigger a reorientation is dependent on the length and aspect ratio of the particles and could be shifted from 85 mT for the small particles to about 147 mT for the large particles. These particles could provide highly interesting magnetic properties to nanocomposites, that could then be used for sensing applications or membranes.
Multi responsive hydrogels have many potential applications in the field of medicine as well as technical fields and are of great interest in fundamental research. Here we present the synthesis and characterization of tailored magnetic hydrogels – micro- as well as macrogels – which consist of iron oxide and cobalt ferrite, varying in phase and morphology, embedded in a thermoresponsive polymer. We introduce new ways to synthesize magnetic particles and revisit some common strategies when dealing with particle synthesis. Subsequently we discuss the details of the thermoresponsive matrix and how we can influence and manipulate the thermoresponsive properties, i.e. the lower critical solution temperature. Ultimately, we present the particle-hydrogel composite and show two exemplary applications for particle matrix interactions, i.e. heat transfer and reorientation of the particles in a magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.