The aim of this study is to tailor the inner structure of positively charged poly-(N-isopropylacrylamid-co-allylamine) (P(NIPAM-co-AA)) microgels for a better control of the distribution of negatively charged magnetic cobaltferrite (CoFe 2 O 4 @CA) nanoparticles (MNPs) within the microgels. Therefore, two different strategies are followed for the microgel synthesis: the (one pot) batch method which leads to a higher cross-linker density in the microgel core and the feeding method which compensates different reaction kinetics of the cross-linker and the monomers. The latter one is expected to result in a homogeneous cross-linker distribution. Information about the cross-linker distribution is indirectly gained by measuring the elastic modulus via indentation experiments with an atomic force microscope. While the batch method results in a higher elastic modulus in the center of the microgel indicating a core/shell structure, the feeding method leads to a constant elastic modulus over the whole microgel. The loading with MNPs and their distribution are studied with transmission electron microscopy (TEM). The TEM images show a large difference in the MNP distribution which is correlated to the cross-linker distribution of both types of microgels. The batch method microgel has a low MNP concentration in the core. The feeding method microgel shows a much more homogeneous distribution of MNPs across the microgel. The latter one also shows a stronger charge reversal which is a hint for a higher loading of the feeding method microgel. Dynamic light scattering and electrophoretic mobility measurements demonstrate that for both types of microgels, the temperature sensitivity is preserved after loading with MNPs.
Core-shell microgels were synthesized via a free radical emulsion polymerization of thermoresponsive poly-(N-isopropyl acrylamide), pNipam, on the surface of silica nanoparticles. Pure pNipam microgels have a lower critical solution temperature (LCST) of about 32 • C. The LCST varies slightly with the crosslinker density used to stabilize the gel network. Including a silica core enhances the mechanical robustness. Here we show that by varying the concentration gradient of the crosslinker, the thermoresponsive behaviour of the core-shell microgels can be tuned. Three different temperature scenarios have been detected. First, the usual behaviour with a decrease in microgel size with increasing temperature exhibiting an LCST; second, an increase in microgel size with increasing temperature that resembles an upper critical solution temperature (UCST), and; third, a decrease with a subsequent increase of size reminiscent of the presence of both an LCST, and a UCST. However, since the chemical structure has not been changed, the LCST should only change slightly. Therefore we demonstrate how to tune the particle size independently of the LCST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.