Aim Our scientific understanding of the extent and distribution of mangrove forests of the world is inadequate. The available global mangrove databases, compiled using disparate geospatial data sources and national statistics, need to be improved. Here, we mapped the status and distributions of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive.
MethodsWe interpreted approximately 1000 Landsat scenes using hybrid supervised and unsupervised digital image classification techniques. Each image was normalized for variation in solar angle and earth-sun distance by converting the digital number values to the top-of-the-atmosphere reflectance. Ground truth data and existing maps and databases were used to select training samples and also for iterative labelling. Results were validated using existing GIS data and the published literature to map 'true mangroves' .
ResultsThe total area of mangroves in the year 2000 was 137,760 km 2 in 118 countries and territories in the tropical and subtropical regions of the world. Approximately 75% of world's mangroves are found in just 15 countries, and only 6.9% are protected under the existing protected areas network (IUCN I-IV). Our study confirms earlier findings that the biogeographic distribution of mangroves is generally confined to the tropical and subtropical regions and the largest percentage of mangroves is found between 5°N and 5°S latitude.
Main conclusionsWe report that the remaining area of mangrove forest in the world is less than previously thought. Our estimate is 12.3% smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of the United Nations. We present the most comprehensive, globally consistent and highest resolution (30 m) global mangrove database ever created. We developed and used better mapping techniques and data sources and mapped mangroves with better spatial and thematic details than previous studies.
The use of stable carbon isotopes as a means of studying energy flow is increasing in ecology and paleoecology. However, secondary fractionation and turnover of stable isotopes in animals are poorly understood processes. This study shows that tissues of the gerbil (Meriones unguienlatus) have different δC values when equilibrated on corn (C) or wheat (C) diets with constant C/C contents. Lipids were depleted 3.0‰ and hair was enriched 1.0‰ relative to the C diet. Tissue δC values were ranked hair>brain>muscle>liver>fat. After changing the gerbils to a wheat (C) diet, isotope ratios of the tissues shifted in the direction of the δC value of the new diet. The rate at which carbon derived from the corn diet was replaced by carbon derived from the wheat diet was adequately described by a negative exponential decay model for all tissues examined. More metabolically active tissues such as liver and fat had more rapid turnover rates than less metabolically active tissues such as hair. The half-life for carbon ranged from 6.4 days in liver to 47.5 days in hair.The results of this study have important implications for the use of δC values as indicators of animal diet. Both fractionation and turnover of stable carbon isotopes in animal tissues may obscure the relative contributions of isotopically distinct dietary components (such as C vs. C, or marine vs. terrestrial) if an animal's diet varies through time. These complications deserve attention in any study using stable isotope ratios of animal tissue as dietary indicators and might be minimized by analysis of several tissues or products covering a range of turnover times.
The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.