We study the two-dimensional bin packing problem: Given a list of n rectangles the objective is to find a feasible, i.e. axis-parallel and non-overlapping, packing of all rectangles into the minimum number of unit sized squares, also called bins. Our problem consists of two versions; in the first version it is not allowed to rotate the rectangles while in the other it is allowed to rotate the rectangles by 90 • , i.e. to exchange the widths and the heights. Two-dimensional bin packing is a generalization of its one-dimensional counterpart and is therefore strongly N P-hard. Furthermore Bansal et al. [2] showed that even an APTAS is ruled out for this problem, unless P = N P. This lower bound of asymptotic approximability was improved by Chlebík & Chlebíková [5] to values 1 + 1/3792 and 1 + 1/2196 for the version with and without rotations, respectively. On the positive side there is an asymptotic 1.69.. approximation by Caprara [4] without rotations and an asymptotic 1.52... approximation by Bansal et al. [1] for both versions.We give a new asymptotic upper bound for both versions of our problem: For any fixed ε and any instance that fits optimally into OPT bins, our algorithm computes a packing into (3/2 + ε) • OPT + 69 bins in the version without rotations and (3/2 + ε) • OPT + 39 bins in the version with rotations. The algorithm has polynomial running time in the input length.In our new technique we consider an optimal packing of the rectangles into the bins. We cut a small vertical or horizontal strip out of each bin and move the intersecting rectangles into additional bins. This enables us to either round the widths of all wide rectangles, or the heights of all long rectangles in this bin. After this step we round the other unrounded side of these rectangles and we achieve a solution with a simple structure and only few types of rectangles. Our algorithm initially rounds the instance and computes a solution that nearly matches the modified optimal solution.
In this paper, we study the two-dimensional geometrical bin packing problem (2DBP): given a list of rectangles, provide a packing of all these into the smallest possible number of unit bins without rotating the rectangles. Beyond its theoretical appeal, this problem has many practical applications, for example in print layout and VLSI chip design.We present a 2-approximate algorithm, which improves over the previous best known ratio of 3, matches the best results for the problem where rotations are allowed and also matches the known lower bound of approximability. Our approach makes strong use of a PTAS for a related 2D knapsack problem and a new algorithm that can pack instances into two bins if OPT = 1.
We study strip packing, which is one of the most classical two-dimensional packing problems: given a collection of rectangles, the problem is to find a feasible orthogonal packing without rotations into a strip of width 1 and minimum height. In this paper we present an approximation algorithm for the strip packing problem with absolute approximation ratio of 5/3 + ε for any ε > 0. This result significantly narrows the gap between the best known upper bounds of 2 by Schiermeyer and Steinberg and 1.9396 by Harren and van Stee and the lower bound 3/2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.