In this paper, we study the two-dimensional geometrical bin packing problem (2DBP): given a list of rectangles, provide a packing of all these into the smallest possible number of unit bins without rotating the rectangles. Beyond its theoretical appeal, this problem has many practical applications, for example in print layout and VLSI chip design.We present a 2-approximate algorithm, which improves over the previous best known ratio of 3, matches the best results for the problem where rotations are allowed and also matches the known lower bound of approximability. Our approach makes strong use of a PTAS for a related 2D knapsack problem and a new algorithm that can pack instances into two bins if OPT = 1.
In this paper, we study the two-dimensional geometrical bin packing problem (2DBP): given a list of rectangles, provide a packing of all these into the smallest possible number of unit bins without rotating the rectangles. Beyond its theoretical appeal, this problem has many practical applications, for example in print layout and VLSI chip design.We present a 2-approximate algorithm, which improves over the previous best known ratio of 3, matches the best results for the problem where rotations are allowed and also matches the known lower bound of approximability. Our approach makes strong use of a PTAS for a related 2D knapsack problem and a new algorithm that can pack instances into two bins if OPT = 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.