Global climate change can have serious direct effects on animal health and production through heat stress. In Hungary, the number of heat stress days per year (YNHD), i.e., days when the temperature humidity index (THI) is above a specific comfort threshold, has increased in recent years based on observed meteorological data. Between 1973 and 2008, the countrywide average increase in YNHD was 4.1% per year. Climate scenarios based on regional climate models (RCM) were used to predict possible changes in YNHD for the near future (2021-2050) relative to the reference period (1961-1990). This comparison shows that, in Hungary, the 30-year mean of YNHD is expected to increase by between 1 and 27 days, depending on the RCM used. Half of the scenarios investigated in this study predicted that, in large parts of Hungary, YNHD will increase by at least 1 week. However, the increase observed in the past, and that predicted for the near future, is spatially heterogeneous, and areas that currently have large cattle populations are expected to be affected more severely than other regions.
The objective of this study was to determine some metabolic and other factors predicting the risk of postpartum uterine disease (PUD), and the effects of puerperal metritis (PM) on metabolic status, reproduction and milk yield were analysed. A total of 105 Holstein-Friesian cows were included, and sampled on day < −14 prepartum and days 4, 10–14, 28–35 and 56–63 postpartum for metabolic tests. From day 4 the development of PUD, and from days 28–35 the ovarian activity was monitored. When grade ≥ 1 + ketonuria was present on day 4 postpartum, this indicated a higher probability of PUD [odds ratio (OR) 2.64; P < 0.05] including PM occurring on days 10–14 (OR: 2.65; P < 0.05). Plasma nonesterified fatty acid (NEFA) concentrations > 0.200 mmol/l on days < −14 prepartum indicated a higher risk of uterine diseases (OR: 3.44; P < 0.05). The odds of PUD increased, depending on whether a body condition score (BCS) loss of ≥ 1.0 occurred between days < −14 and 28–35 (OR: 2.82; P < 0.05), between days < −14 and 10–14 (OR: 4.79; P < 0.01) or between days 10–14 and 28–35 (OR: 10.81; P < 0.01). PM was more probable (OR: 27.3; P < 0.001) in cows with retained placenta. The risk of uterine diseases was lower in multiparous than in primiparous cows (OR: 0.29; P < 0.01). PM increased the risk of ovarian inactivity between days 28 and 35 (OR: 2.83; P < 0.05). Cows affected with PM (PM+ cows) showed lower milk production on day 4 (kg; P < 0.05) and lower milk production (P < 0.05), milk fat and milk protein production (kg; P < 0.01; P < 0.01) in the first 100 days of lactation than did PM− cows.
Milk yield, milk ingredients, health and other, production-related parameters of subclinically infected, Mycobacterium avium ssp. paratuberculosis (MAP-) shedding (positive faecal PCR, n = 20) and non-shedding (negative faecal PCR, n = 10) dairy cows were compared in the period from 10 days prepartum to 120 days postpartum. Body condition, rumen fill and faeces scores were lower in the MAP-shedding cows. There was no significant difference in plasma or urine metabolic parameters between the groups. Milk yield and lactose content tended to be lower (P = 0.074 and 0.077, respectively), somatic cell count tended to be higher (P = 0.097), while milk fat content was significantly higher (P = 0.006) in MAP-shedding cows than in the controls. Milk protein content did not differ between the groups. All other health and production parameters [number of reproductive tract treatments, number of udder treatments, number of artificial inseminations (AIs), calving interval, and service period] were significantly better in the control group. It is concluded that MAP infection, even in a subclinical form, has a significant impact on some production and health parameters of dairy cows.
This Research Communication describes, for the first time, the detection of HSP70 in saliva of dairy cows. Thermal stress is a major environmental stress that limits animal growth, metabolism, and productivity. The cellular response to heat stress involves the synthesis of heat shock proteins (HSPs), presumably to protect the functional stability of cells at increasing temperatures. HSP70 has been found to be present in cattle blood serum and may also be present in other secretory fluids, such as saliva, as already observed in humans. The aim of this study was to detect heat shock protein HSP70 in bovine saliva. Saliva samples were taken from higher-(n = 5) and lower milk producing (n = 5) Holstein-Friesian cows in summer and in winter for the detection of HSP70. HSP70 concentrations were assayed using the ELISA technique. Salivary HSP70 concentrations ranged from 0·524 to 12·174 ng/ml in cows. Higher salivary HSP70 concentrations were significantly associated with higher milk production and higher environmental temperature, but not with rectal temperature.
Escherichia coli (EC) strains belong to several pathotypes capable of infecting both humans and animals. Some of them have zoonotic potential and can sporadically cause epidemic outbreaks. Our aim was to screen for the distribution of these pathotypes in broilers and their related products. Therefore, E. coli strains were isolated ( n = 118) from poultry intestine ( n = 57), carcass ( n = 57), and wastewater ( n = 4) samples from one slaughterhouse with own reared poultry source and the National Reference Laboratory (NRL) poultry E. coli collection ( n = 170) from the year 2017 was also studied. All 288 E. coli strains were screened by PCR for pathotype-specific genes stx, eae, st-lt, aggR, ipaH , and for further EPEC-specific virulence genes ( bfp, EAF, tir, perA, ler ). Altogether 35 atypical enteropathogenic E. coli (aEPEC) strains from the slaughterhouse and 48 aEPEC strains from the NRL collection were found. Regarding the phylogenetic groups of aEPEC, all four main groups were represented but there was a shift toward the B2 group (25%) as compared with the non-EPEC isolates (3%). The aEPEC isolates belonged to serogroups O14, O108, and O45. Multidrug resistance (MDR) was abundant in aEPEC strains (80 out of 83 aEPEC) with a diverse resistance pattern ( n = 56). Our results of this study indicate that the high frequency of aEPEC in broilers and on their carcass surface, with frequent MDR to several antibiotic groups, raises the possibility that these strains pose a zoonotic risk to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.