The consequences of traumatic brain injury (TBI) sustained during late adolescence (7 weeks old) on spontaneous object recognition memory and on anxiety-like behaviors in the elevated plus maze were tested in rats during adulthood. Testing took place at 2 different postinjury times, in separate groups: 3 and 6 weeks, when animals were 10 and 13 weeks old, respectively. The rats were either submitted to controlled cortical impact injury, an experimental model of focal TBI with contusion, or were sham-operated. TBI animals failed to remember the familiar object and had a significantly lower performance than sham-operated animals, indicating memory disruption, when the retention delay was 24 hr, but not when it was 3 hr. TBI did not have any significant effect on the main anxiety-related behaviors, but it reduced time in the central platform of the elevated plus maze. The effects of TBI on memory and on anxiety-like behaviors were similar at the 2 postinjury times. In both TBI and sham-operated groups, animals tested 6 weeks after surgery had lower anxiety-related indices than those tested at 3 weeks, an effect that might be indicative of reduced anxiety levels with increasing age. In summary, focal TBI with contusion sustained during late adolescence led to object recognition memory deficits in a 24-hr test during adulthood but did not have a major impact on anxiety-like behaviors. Memory deficits persisted for at least 6 weeks after injury, indicating that spontaneous modifications of these functional disturbances did not take place along this time span.
(1) Background: Stroke is a major cause of permanent disability in multiple functions, including the cognitive domain. Since both cognitive training and aerobic physical exercise may exert positive effects on cognition after stroke, one may expect synergistic benefits when combining both interventions. (2) Methods: We carried out a systematic search of studies testing, in adult stroke patients, whether structured aerobic exercise combined with cognitive training led to higher cognitive benefits than either of these interventions when applied singly, or than interventions not including aerobic exercise or cognitive training. (3) Results: Five fair-quality randomized controlled trials fulfilled the search criteria. Exercise intensity was moderate–vigorous and cognitive training was mainly computer-based. The studies were heterogeneous regarding the cognitive tests used, and for this reason, a meta-analysis was not performed. Only three studies included follow-up assessment. The combined intervention was associated with pre-post improvement in at least one cognitive test in all the studies, and with higher positive effects compared to other conditions (although statistical significance was not always reached) in four studies. (4) Conclusions: Further trials including a long-term follow-up and comprehensive neuropsychological testing should be undertaken to determine whether combined aerobic exercise and cognitive training leads to additive cognitive benefits after stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.