In the present study, we assessed the responses of the vasotocinergic and isotocinergic systems to chronic stress induced by cortisol administration in the gilthead sea bream (Sparus aurata). Pituitary and plasma arginine vasotocin (AVT) and isotocin (IT) levels, as well as hypothalamic pro-vasotocin (pro-VT) and pro-isotocin (pro-IT) mRNA expression levels, were analysed. In addition, the mRNA levels of three receptors, AVTR type V1a2, AVTR type V2 and ITR, were analysed in several target organs associated with the following physiological processes: (i) integration and control (hypothalamus), (ii) metabolism and its control (liver and hypothalamus), (iii) osmoregulation (gills) and (iv) stress response (head kidney). Specimens were injected intraperitoneally with slow-release implants (5 μL g −1 body mass) containing coconut oil alone (control group) or with cortisol (50 μg g −1 body mass; cortisol group). Both AVT and IT synthesis and release were correlated with plasma cortisol values, suggesting a potential interaction between both hormonal systems and cortisol administration. Our results suggest that the activation of hepatic metabolism as well as the hypothalamic control of metabolic processes provide the energy necessary to overcome stress, which could be partly mediated by AVTRs and ITR. Upregulation of branchial AVT and IT receptor expression following cortisol treatment suggests an involvement of the vasotocinergic and isotocinergic systems in the regulation of ion channels/transporters during stressful situations. Finally, changes in AVT and IT receptor mRNA expression in the head kidney suggest these nonapeptides participate in feedback mechanisms that regulate the synthesis/release of cortisol. Our results indicate a relationship between cortisol and both the vasotocinergic and isotocinergic systems during simulated chronic stress in S. aurata.
The ability to continuously grow and regenerate the gills throughout life is a remarkable property of fish and amphibians. Considering that gill regeneration was first described over one century ago, it is surprising that the underlying mechanisms of cell and tissue replacement in the gills remain poorly understood. By contrast, the mammalian lung is a largely quiescent organ in adults but is capable of facultative regeneration following injury. In the course of the past decade, it has been recognized that lungs contain a population of stem or progenitor cells with an extensive ability to restore tissue; however, despite recent advances in regenerative biology of the lung, the signaling pathways that underlie regeneration are poorly understood. In this Review, we discuss the common evolutionary and embryological origins shared by gills and mammalian lungs. These are evident in homologies in tissue structure, cell populations, cellular function and genetic pathways. An integration of the literature on gill and lung regeneration in vertebrates is presented using a comparative approach in order to outline the challenges that remain in these areas, and to highlight the importance of using aquatic vertebrates as model organisms. The study of gill regeneration in fish and amphibians, which have a high regenerative potential and for which genetic tools are widely available, represents a unique opportunity to uncover common signaling mechanisms that may be important for regeneration of respiratory organs in all vertebrates. This may lead to new advances in tissue repair following lung disease.
Several physiological functions in fish are shaped by environmental stimuli received during early life. In particular, early-life hypoxia has been reported to have long-lasting effects on fish metabolism, with potential consequences for fish life history traits. In the present study, we examine whether the synergistic stressors hypoxia (40% and 100% air saturation) and temperature (15° and 20°C), encountered during early life, could condition later metabolic response in European sea bass (Dicentrarchus labrax) juveniles. Growth rate and metabolic parameters related to carbohydrate and lipid metabolism in the liver were investigated at the juvenile stage under normoxic and chronic hypoxic conditions. Juvenile growth rates were significantly lower (p<1×10) under hypoxic conditions and were not improved by prior early-life exposure to hypoxia. Growth was 1.3 times higher (p<5×10) in juveniles reared at 15°C during the larval stage than those reared at 20°C, suggesting that compensatory growth had occurred. Early-life exposure to hypoxia induced higher (p<2×10) glycogen stores in juveniles even though there was no apparent regulation of their carbohydrate metabolism. In the liver of juveniles exposed to chronic hypoxia, lower glycogen content combined with stimulation of phosphoenolpyruvate carboxykinase gene expression and higher lactate concentration indicated a stimulation of the anaerobic glycolytic pathway. Furthermore, hypoxia only induced lower (p<1×10) lipid content in the liver of juveniles that had experienced 15°C at the larval stage. The present study provides evidence that environmental conditions experienced during early life shape the metabolic traits of D. labrax with potential consequences for juvenile physiological performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.