Deafness is the most common form of sensory impairment in the human population and is frequently caused by recessive mutations. To obtain animal models for recessive forms of deafness and to identify genes that control the development and function of the auditory sense organs, we performed a forward genetics screen in mice. We identified 13 mouse lines with defects in auditory function and six lines with auditory and vestibular defects. We mapped several of the affected genetic loci and identified point mutations in four genes. Interestingly, all identified genes are expressed in mechanosensory hair cells and required for their function. One mutation maps to the pejvakin gene, which encodes a new member of the gasdermin protein family. Previous studies have described two missense mutations in the human pejvakin gene that cause nonsyndromic recessive deafness (DFNB59) by affecting the function of auditory neurons. In contrast, the pejvakin allele described here introduces a premature stop codon, causes outer hair cell defects, and leads to progressive hearing loss. We also identified a novel allele of the human pejvakin gene in an Iranian pedigree that is afflicted with progressive hearing loss. Our findings suggest that the mechanisms of pathogenesis associated with pejvakin mutations are more diverse than previously appreciated. More generally, our findings demonstrate that recessive screens in mice are powerful tools for identifying genes that control the development and function of mechanosensory hair cells and cause deafness in humans, as well as generating animal models for disease.
BackgroundThe expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors.MethodsC57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine.ResultsPlace preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice.ConclusionsGenetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine.
Catechol-O-methyltransferase (COMT) is an ubiquitously expressed enzyme that maintains basic biologic functions by inactivating catechol substrates. In humans, polymorphic variance at the COMT locus has been associated with modulation of pain sensitivity (Andersen & Skorpen, 2009) and risk for developing psychiatric disorders (Harrison & Tunbridge, 2008). A functional haplotype associated with increased pain sensitivity was shown to result in decreased COMT activity by altering mRNA secondary structure-dependent protein translation (Nackley et al., 2006). However, the exact mechanisms whereby COMT modulates pain sensitivity and behavior remain unclear and can be further studied in animal models. We have assessed Comt1 gene expression levels in multiple brain regions in inbred strains of mice and have discovered that Comt1 is differentially expressed among the strains, and this differential expression is cis-regulated. A B2 Short Interspersed Element (SINE) was inserted in the 3′UTR of Comt1 in 14 strains generating a common haplotype that correlates with gene expression. Experiments using mammalian expression vectors of full-length cDNA clones with and without the SINE element demonstrate that strains with the SINE haplotype (+SINE) have greater Comt1 enzymatic activity. +SINE mice also exhibit behavioral differences in anxiety assays and decreased pain sensitivity. These results suggest that a haplotype, defined by a 3′ UTR B2 SINE element, regulates Comt1 expression and some mouse behaviors.
Understanding and effectively treating anxiety disorders are a challenge for both scientists and clinicians. Despite a variety of available therapies, the efficacy of current treatments is still not optimal and adverse side effects can result in non-compliance. Animal models have been useful for studying the underlying biology of anxiety and assessing the anxiolytic properties of potential therapeutics. The open field (OF) is a commonly used assay of anxiety-like behavior. The OF was developed and validated in rats and then transferred to use in the mouse with only limited validation. The present study tests the efficacy of prototypical benzodiazepine anxiolytics, chlordiazepoxide (CDP) and diazepam (DZ), for increasing center time in the OF in C57BL/6J (B6) mice. Multiple doses of CDP and DZ did not change time spent in the center of the OF. Increasing illumination in the OF did not alter these results. The non-benzodiazepine anxiolytic, buspirone (BUSP) also failed to increase center time in the OF while the anxiogenic meta-chlorophenylpiperazine (mCPP) increased center time. Additional inbred mouse strains, BALB/cJ (BALB) and DBA/2J (D2) did not show any change in center time in response to CDP. Moreover, evaluation of CDP in B6 mice in the elevated plus maze (EPM), elevated zero maze (EZM) and light dark assay (LD) did not reveal changes in anxiety-like behavior while stress-induced hyperthermia (SIH) was decreased by DZ. Pharmacokinetic (PK) studies suggest that adequate CDP is present to induce anxiolysis. We conclude that the measure of center time in the OF does not show predictive validity for anxiolysis in these inbred mouse strains.
We carried out a QTL mapping experiment in two phenotypically similar inbred mouse strains, C57BL/6J and C58/J, using the open field assay, a well-established model of anxiety-related behavior in rodents. This intercross was initially carried out as a control cross for an ENU-mutagenesis mapping study. Surprisingly, although open field behavior is similar in the two strains, we identified significant QTL in their F2 progeny. Marker regression identified a locus on chromosome 8 having associations with multiple open field measures and a significant interaction between loci on chromosomes 13 and 17. Together, the chromosome 8 locus and the interaction effect form the core set of QTL controlling these behaviors with additional loci on chromosomes 1 and 6 present in a subset of the behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.