In this article, the effectiveness of an advanced sludge treatment technology (Wet Oxidation, WO) is presented by analyzing experimental studies at the lab scale and data collected during years of industrial-scale activities. The data showed good performances of WO on COD and VSS removal efficiencies-about 65-70% and 95-98%, respectively-and the effect of operating parameters (i.e., temperature and reaction time) on process efficiencies was highlighted. The energy balance of the WO systems indicated that about 90% of the energy entering the system may be recovered. Finally, a techno-economic assessment showed that WO can be a suitable solution for sludge treatment and minimization.
Piggery slaughterhouse wastewater poses serious issues in terms of disposal feasibility and environmental impact, due to its huge organic load and variability. It is commonly treated by means of activated sludge processes, whose performance, in case of municipal wastewater, can be monitored by means of specific analyses, such as Sludge Biotic Index (SBI), Sludge Index (SI) and floc and filamentous bacteria observation. Therefore, this paper was aimed at assessing the applicability of these techniques to piggery slaughterhouse sewage. A plant located in Northern Italy was monitored for 1 year. Physical, chemical and operation parameters were measured; the activated sludge community (ciliates, flagellates, amoebae and small metazoa) was analysed for calculating SBI and SI. Floc and filamentous bacteria were examined and described accordingly with internationally adopted criteria. The results showed the full applicability of the studied techniques for optimizing the operation of a piggery slaughterhouse wastewater treatment plant.
Nowadays, sewage sludge management represents one of the most important issues in wastewater treatment. Within the European project "ROUTES," wet oxidation (WO) was proposed for sludge minimization. Four different types of sludge were treated in an industrial WO plant: (1) municipal primary sludge (chemical oxygen demand COD: 73.0 g/L; volatile suspended solid VSS: 44.1 g/L); (2) secondary sludge from an industrial wastewater treatment plant (WWTP) without primary sedimentation (COD: 71.8 g/L; VSS: 34.2 g/L); (3) secondary sludge from a mixed municipal and industrial WWTP without primary sedimentation (COD: 61.9 g/L; VSS: 38.7 g/L); and (4) mixed primary (70%) and secondary (30%) municipal sludge (COD: 81.2 g/L; VSS: 40.6 g/L). The effect of process parameters (temperature, reaction time, oxygen dosage) on WO performance was investigated. Depending on operating conditions, VSS and COD removal efficiency varied in the range 80-97% and 43-71%, respectively. A correlation between process efficiency and the initial VSS/TSS (total suspended solids) ratio was highlighted. Furthermore, a mathematical model of WO process for simulating VSS and COD profiles was developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.