Our data indicate that preterm birth is associated with regionally specific, long-term reductions in brain volume and that morphological abnormalities are, in turn, associated with poorer cognitive outcome. JAMA. 2000;284:1939-1947.
These findings of reduced volumes in sensorimotor and parieto-occipital regions in preterm infants, and the prospective correlations of regional volumes with cognitive outcome, confirm and extend findings previously reported in a cross-sectional study of 8-year-old prematurely born children. The data suggest that regional brain volumes near term are a promising marker for predicting disturbances of cognitive outcome in preterm infants. Further prospective, longitudinal studies of neonatal brain volumes and developmental indices into later childhood are required to confirm the utility of regional brain volumes as predictors of longer term outcome.
To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ER T2 ) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ER T2 ) transgene, OHT (4-hydroxytamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and allowed us to permanently tag these cells with reporter genes. Three days after recombination, reporter-tagged cells were quiescent astroglial cells that expressed the stem cell marker LeX in the subventricular zone (SVZ) and dentate gyrus (DG). After 2-4 weeks, the tagged GFAP lineage included proliferating progenitors expressing the neuronal marker Dcx (Doublecortin) in the SVZ and the DG. After 4 weeks, the GFAP lineage generated mature neurons in the olfactory bulb (OB), DG, and, strikingly, also in the cerebral cortex. A major portion of all neurons in the DG and OB born at the end of the first postnatal week were generated from GFAP ϩ cells. In addition to neurons, mature oligodendrocytes and astrocytes populating the cerebral cortex and white matter were also the progeny of GFAP ϩ astroglial ancestors. Thus, genetic fate mapping of postnatal GFAP ϩ cells reveals that they seed the postnatal brain with neural progenitors/stem cells that in turn give rise to neural precursors and their mature neuronal and oligodendrocytic progeny in many CNS regions, including the cerebral cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.