The risk of transfusion-associated transmission of SARS-CoV-2 is unknown. Cappy and colleagues report on hemovigilance studies of 268 blood donations from individuals reporting symptoms shortly after donation. Of 268 samples, 3 tested positive for viral RNA, of which 1 had components that were transfused before testing; no cases of transfusion-documented transmission were seen.
Until recently, the method of choice to characterize viral diversity consisted in cloning PCR amplicons of full-length viral genomes and Sanger-sequencing of multiple clones. However, this is extremely laborious, time-consuming, and low-throughput. Next generation short-read sequencing appears also limited by its inability to directly sequence full-length viral genomes. The MinION™ device recently developed by Oxford Nanopore Technologies can be a promising alternative by applying long-read single-molecule sequencing directly to the overall amplified products generated in a PCR reaction. This new technology was evaluated by using hepatitis B virus (HBV) as a model. Several previously characterized HBV-infected clinical samples were investigated including recombinant virus, variants that harbored deletions and mixed population. Original MinION device was able to generate individual complete 3,200-nt HBV genome sequences and to identify recombinant variants. MinION was particularly efficient in detecting HBV genomes with multiple large in-frame deletions and spliced variants concomitantly with non-deleted parental genomes. However, an average-12% sequencing error rate per individual reads associated to a low throughput challenged single-nucleotide resolution, polymorphism calling and phasing mutations directly from the sequencing reads. Despite this high error rate, the pairwise identity of MinION HBV consensus genome was consistent with Sanger sequencing method. MinION being under continuous development, further studies are needed to evaluate its potential use for viral infection characterization.
Hepatitis B virus (HBV) infection is the most frequent viral infection found in blood donors (BDs) in France. We analyzed the epidemiological and sero-molecular data on HBV infection gathered over the past two decades by the French haemovigilance surveillance network, blood screening laboratories, and the national reference center for transfusion infectious risks (NRC). Between 2000 and 2020, 6149 of the 58,160,984 donations (1.06/10,000) tested HBV positive, 98% of them from first-time blood donors (FTBDs). In addition, 2212 (0.0071%) of the 30,977,753 donations screened for HBV DNA tested DNA positive, of which 25 (1.1%) were positive only for this marker. HBV prevalence decreased by 2.8-fold and the residual risk for transfusion-transmitted HBV infection decreased 13-fold and was divided by 13. The major risk factor for HBV infection was the origin of donors (endemic country, 66.5%), followed by parenteral exposure (10.7%). In the whole HBV-positive BD population, genotype D was predominant (41.8%), followed by genotypes A (26.2%) and E (20.4%), reflecting the geographical origin of donors. The low and decreasing prevalence and incidence of HBV infection in French BDs, coupled with a screening strategy using three HBV markers (HBsAg, anti-HBc and DNA), ensures a high level of blood safety, further reinforced by the implementation of pathogen-reduction measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.