Our study found that men with a family history of breast or prostate cancer had elevated prostate cancer risks, including risk of lethal disease. These findings have translational relevance for cancer risk prediction in men.
Short application of the volatile anesthetic isoflurane at reperfusion after ischemia exerts strong protection of the heart against injury. Mild depolarization and acidification of the mitochondrial matrix are involved in the protective mechanisms of isoflurane, but the molecular basis for these changes is not clear. In this study, mitochondrial respiration, membrane potential, matrix pH, matrix swelling, ATP synthesis and -hydrolysis, and H2O2 release were assessed in isolated mitochondria. We hypothesized that isoflurane induces mitochondrial depolarization and matrix acidification through direct action on both complex I and ATP synthase. With complex I-linked substrates, isoflurane (0.5 mM) inhibited mitochondrial respiration by 28±10%, and slightly, but significantly depolarized membrane potential and decreased matrix pH. With complex II- and complex IV-linked substrates, respiration was not changed, but isoflurane still decreased matrix pH and depolarized mitochondrial membrane potential. Depolarization and matrix acidification were attenuated by inhibition of ATP synthase with oligomycin, but not by inhibition of mitochondrial ATP- and Ca2+-sensitive K+ channels or uncoupling proteins. Isoflurane did not induce matrix swelling and did not affect ATP synthesis and hydrolysis, but decreased H2O2 release in the presence of succinate in an oligomycin- and matrix pH-sensitive manner. Isoflurane modulated H+ flux through ATP synthase in an oligomycin-sensitive manner. Our results indicate that isoflurane-induced mitochondrial depolarization and acidification occur due to inhibition of the electron transport chain at the site of complex I and increased proton flux through ATP synthase. K+ channels and uncoupling proteins appear not to be involved in the direct effects of isoflurane on mitochondria.
Background Research on psychosocial stress and risk of breast cancer has produced conflicting results. Few studies have assessed this relation by breast cancer subtype or specifically among Black women, who experience unique chronic stressors. Methods We used prospective data from the Black Women’s Health Study, an ongoing cohort study of 59,000 US Black women, to assess neighborhood- and individual-level psychosocial factors in relation to risk of breast cancer. We used factor analysis to derive two neighborhood score variables after linking participant addresses to US Census data (2000 and 2010) on education, employment, income and poverty, female-headed households, and Black race for all households in each residential block group. We used Cox proportional hazards regression to estimate hazard ratios (HR) and 95% confidence intervals (CI) adjusted for established breast cancer risk factors. Results During follow-up from 1995 to 2017, there were 2167 incident invasive breast cancer cases (1259 estrogen receptor positive (ER +); 687 ER negative (ER−)). For ER− breast cancer, HRs were 1.26 (95% CI 1.00–1.58) for women living in the highest quartile of neighborhood disadvantage relative to women in the lowest quartile, and 1.24 (95% CI 0.98–1.57) for lowest versus highest quartile of neighborhood socioeconomic status (SES). For ER+ breast cancer, living in the lowest quartile of neighborhood SES was associated with a reduced risk of ER+ breast cancer (HR = 0.83, 95% CI 0.70–0.98). With respect to individual-level factors, childhood sexual abuse (sexual assault ≥ 4 times vs. no abuse: HR = 1.35, 95% CI 1.01–1.79) and marital status (married/living together vs. single: HR = 1.29, 95% CI 1.08–1.53) were associated with higher risk of ER+, but not ER− breast cancer. Conclusion Neighborhood disadvantage and lower neighborhood SES were associated with an approximately 25% increased risk of ER− breast cancer in this large cohort of Black women, even after control for multiple behaviors and lifestyle factors. Further research is need to understand the underlying reasons for these associations. Possible contributing factors are biologic responses to the chronic stress/distress experienced by individuals who reside in neighborhoods characterized by high levels of noise, crime and unemployment or the direct effects of environmental toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.