The observation that many chronic wounds are ischemic has spurred a series of studies evaluating the response of cells exposed to hypoxia. To date, these studies have shown largely beneficial effects from hypoxia, such as increased cellular replication and procollagen synthesis. These findings are counter-intuitive from a clinical standpoint because cellular growth and synthetic function are known to be retarded in chronic ischemic wounds. We have established an in vitro system in which human dermal fibroblasts grown chronically at 5 +/- 3 mm Hg will proliferate at a rate three times slower than those fibroblasts grown under standard culture conditions (namely an oxygen partial pressure of 150 mm Hg). No phenotypic changes are noted in chronically hypoxic cells, and the growth-retarding effects are reversible when the cells are returned to standard oxygen conditions. Competitive reverse transcription-polymerase chain reaction showed that acute exposure to hypoxia (up to 1 week) results in a 6.3-fold increase in the relative expression of transforming growth factor-beta1 messenger RNA, whereas chronic exposure to hypoxia leads to a 3.1-fold decrease in this message. Collagen production measured at both the mRNA and protein level is also decreased in the setting of chronic hypoxia. We propose that this system may be the most appropriate setting for studying the role of oxygen on dermal fibroblasts in ischemic, nonhealing wounds.
Cryopreserved, transiently transfected HepG2 cells were compared to freshly transfected HepG2 cells for use in a pregnane X receptor (PXR) transactivation assay. Assay performance was similar for both cell preparations; however, cryopreserved cells demonstrated less interassay variation. Validation with drugs of different PXR activation potencies and efficacies demonstrated an excellent correlation (r(2) > 0.95) between cryopreserved and fresh cells. Cryopreservation did not change the effect of known CYP3A4 inducers that have poor cell permeability, indicating that cryopreservation had little effect on membrane permeability. In addition, cryopreserved HepG2 cells did not exhibit enhanced susceptibility to cytotoxic compounds compared to transiently transfected control cells. The use of cryopreserved cells enables this assay to run with enhanced efficiency.
In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) binding induces proapoptotic signals in CD4؉ T cells without a requirement of infection. Defective virus particles, which represent the majority of HIV-1, usually contain a functional Env and therefore represent a potentially significant cause of such CD4؉ -T-cell loss. We reasoned that an HIV-1 inhibitor that prohibits Env-host cell interactions could block the destructive effects of defective particles. HIV-1 attachment inhibitors (AIs), which potently inhibit Env-CD4 binding and subsequent downstream effects of Env, display low-nanomolar antiapoptotic potency and prevent CD4؉ -T-cell depletion from mixed lymphocyte cultures, also with low-nanomolar potency. Specific Env amino acid changes that confer resistance to AI antientry activity eliminate AI antiapoptotic effects. We observed that CD4؉ -T-cell destruction is specific for CXCR4-utilizing HIV-1 strains and that the fusion blocker enfuvirtide inhibits Env-mediated CD4؉ -T-cell killing but is substantially less potent than AIs. These observations, in conjunction with observed antiapoptotic activities of soluble CD4 and the CXCR4 blocker AMD3100, suggest that this AI activity functions through a mechanism common to AI antientry activity, e.g., prevention of Env conformation changes necessary for specific interactions with cellular factors that facilitate viral entry. Our study suggests that AIs, in addition to having potent antientry activity, could contribute to immune system homeostasis in individuals infected with HIV-1 that can engage CXCR4, thereby mitigating the increased risk of adverse clinical events observed in such individuals on current antiretroviral regimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.