A study was performed to evaluate use of quality improvement techniques to decrease the variability in turnaround time (TAT) for radiology reports on emergency department (ED) radiographs. An interdepartmental improvement team applied multiple interventions. Statistical process control charts were used to evaluate for improvement in mean TAT for ED radiographs, percentage of ED radiographs read within 35 minutes, and standard deviation of the mean TAT. To determine if the changes in the radiology department had an effect on the ED, the average time from when an ED physician first met with the patient to the time when the final treatment decision was made was also measured. There was a significant improvement in mean TAT for ED radiographs (from 23.9 to 14.6 minutes), percentage of ED radiographs read within 35 minutes (from 82.2% to 92.9%), and standard deviation of the mean TAT (from 22.8 to 12.7). The mean time from when an ED physician first met with the patient to the time a final treatment decision was made decreased from 88.7 to 79.8 minutes. Quality improvement techniques were used to decrease mean TAT and the variability in TAT for ED radiographs. This change was associated with an improvement in ED throughput.
The modern radiology department is built around the flow of information. Ordering providers request imaging studies to be performed, technologists complete the work required to perform the imaging studies, and radiologists interpret and report on the imaging findings. As each of these steps is performed, data flow between multiple information systems, most notably the radiology information system (RIS), the picture archiving and communication system (PACS) and the voice dictation system. Even though data flow relatively seamlessly, the majority of our systems and processes are inefficient. The purpose of this article is to describe the radiology value stream and describe how radiology informaticists in one department have worked to improve the efficiency of the value stream at each step. Through these examples, we identify and describe several themes that we believe have been crucial to our success.
The method that we developed can capture any digital image-including an image from a picture archiving and communication system (PACS)-using widely available, inexpensive software. Our method is easy to learn, simple to use, and inexpensive to implement. It is adaptable in a wide range of networking environments and can capture and store images rapidly for a variety of uses. It can be used without interfering with clinical workflow at the PACS workstation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.