Background: Realistic biochemical simulators aim to improve our understanding of many biological processes that would be otherwise very difficult to monitor in experimental studies. Increasingly accurate simulators may provide insights into the regulation of biological processes due to stochastic or spatial effects.
Abstract-The Koetter-Vardy algorithm is an algebraic softdecision decoding algorithm for Reed-Solomon codes. Software implementations of the Koetter-Vardy algorithm are considered as part of a redecoding architecture that augments a hardware hard-decision decoder with soft-decision decoding software on an embedded processor. In this paper we investigate the implementation of the interpolation step of the Koetter-Vardy algorithm on SIMD processor architectures. A parallelization of the algorithm is given using the K'th order Horner's rule for parallel polynomial evaluation. The SIMD algorithm has a running time 2.5 to 4 times faster than a serial implementation on a DSP processor. To gain further speedup we propose a merged-SIMD architecture that calculates the Hasse derivative in parallel with the polynomial updates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.