Hypophosphatasia is an inborn error of metabolism characterized by deficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP) and skeletal disease due to impaired mineralization of cartilage and bone matrix. We investigated two independently generated TNSALP gene knock-out mouse strains as potential models for hypophosphatasia. Homozygous mice (-/-) had < 1% of wild-type plasma TNSALP activity; heterozygotes had the predicted mean of ∼50%. Phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5-phosphate are putative natural substrates for TNSALP and all were increased endogenously in the knock-out mice. Skeletal disease first appeared radiographically at ∼10 days of age and featured worsening rachitic changes, osteopenia, and fracture. Histologic studies revealed developmental arrest of chondrocyte differentiation in epiphyses and in growth plates with diminished or absent hypertrophic zones. Progressive osteoidosis from defective skeletal matrix mineralization was noted but not associated with features of secondary hyperparathyroidism. Plasma and urine calcium and phosphate levels were unremarkable. Our findings demonstrate that TNSALP knock-out mice are a good model for the infantile form of hypophosphatasia and provide compelling evidence for an important role for TNSALP in postnatal development and mineralization of the murine skeleton. (J Bone Miner
Hypophosphatasia (HPP) often leads to premature loss of deciduous teeth, due to disturbed cementum formation. We addressed the question to what extent cementum and dentin are similarly affected. To this end, we compared teeth from children with HPP with those from matched controls and analyzed them microscopically and chemically. It was observed that both acellular and cellular cementum formation was affected. For dentin, however, no differences in mineral content were recorded. To explain the dissimilar effects on cementum and dentin in HPP, we assessed pyrophosphate (an inhibitor of mineralization) and the expression/activity of enzymes related to pyrophosphate metabolism in both the periodontal ligament and the pulp of normal teeth. Expression of nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) in pulp proved to be significantly lower than in the periodontal ligament. Also, the activity of NPP1 was less in pulp, as was the concentration of pyrophosphate. Our findings suggest that mineralization of dentin is less likely to be under the influence of the inhibitory action of pyrophosphate than mineralization of cementum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.