The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread with devastating consequences. For passive immunization efforts, nanobodies have size and cost advantages over conventional antibodies. Here, we generated four neutralizing nanobodies that target the receptor-binding domain of the SARS-CoV-2 spike protein. We defined two distinct binding epitopes using x-ray crystallography and cryo-electron microscopy. Based on the structures, we engineered multivalent nanobodies with more than 100-fold improved neutralizing activity than monovalent nanobodies. Biparatopic nanobody fusions suppressed the emergence of escape mutants. Several nanobody constructs neutralized through receptor-binding competition, while other monovalent and biparatopic nanobodies triggered aberrant activation of the spike fusion machinery. These premature conformational changes in the spike protein forestalled productive fusion, and rendered the virions non-infectious.
Inflammasomes integrate cytosolic evidence of infection or damage to mount inflammatory responses. The inflammasome sensor NLRP1 is expressed in human keratinocytes and coordinates inflammation in the skin. We found that diverse stress signals induce human NLRP1 inflammasome assembly by activating MAP kinase p38: While the ribotoxic stress response to UV and microbial molecules exclusively activates p38 through MAP3K ZAKα, infection with arthropod-borne alphaviruses, including Semliki Forest and Chikungunya virus, activates p38 through ZAKα and potentially other MAP3K. We demonstrate that p38 directly phosphorylates NLRP1 and that serine 107 in the linker region is critical for activation. NLRP1 phosphorylation is followed by ubiquitination of NLRP1PYD, N-terminal degradation of NLRP1, and nucleation of inflammasomes by NLRP1UPA-CARD. In contrast, activation of NLRP1 by nanobody-mediated ubiquitination, viral proteases, or inhibition of DPP9 was independent of p38 activity. Taken together, we define p38 activation as a unifying signaling hub that controls NLRP1 inflammasome activation by integrating a variety of cellular stress signals relevant to the skin.
Inflammasomes sense intracellular clues of infection, damage, or metabolic imbalances. Activated inflammasome sensors polymerize the adaptor ASC into micron-sized "specks" to maximize caspase-1 activation and the maturation of IL-1 cytokines. Caspase-1 also drives pyroptosis, a lytic cell death characterized by leakage of intracellular content to the extracellular space. ASC specks are released among cytosolic content, and accumulate in tissues of patients with chronic inflammation. However, if extracellular ASC specks contribute to disease, or are merely inert remnants of cell death remains unknown. Here, we show that camelid-derived nanobodies against ASC (VHH ASC ) target and disassemble post-pyroptotic inflammasomes, neutralizing their prionoid, and inflammatory functions. Notably, pyroptosis-driven membrane perforation and exposure of ASC specks to the extracellular environment allowed VHH ASC to target inflammasomes while preserving pre-pyroptotic IL-1b release, essential to host defense. Systemically administrated mouse-specific VHH ASC attenuated inflammation and clinical gout, and antigen-induced arthritis disease. Hence, VHH ASC neutralized post-pyroptotic inflammasomes revealing a previously unappreciated role for these complexes in disease. VHH ASC are the first biologicals that disassemble pre-formed inflammasomes while preserving their functions in host defense.
Inflammasomes integrate cytosolic evidence of infection or damage to mount inflammatory responses. The inflammasome sensor NLRP1 is expressed in human keratinocytes and coordinates inflammation in the skin. We found that diverse stress signals converge on the activation of p38 kinases to initiate human NLRP1 inflammasome assembly: UV irradiation and microbial molecules that initiate the ribotoxic stress response critically relied on the MAP3 kinase ZAKα to activate p38 and ultimately human NLRP1. Infection with insect-transmitted alphaviruses, including Semliki Forest, Ross River, and Chikungunya virus, also activated NLRP1 in a p38-dependent manner. In the absence on ZAKα, inflammasome assembly was maintained, although at reduced levels, indicating contribution of other upstream kinases. NLRP1 activation by direct nanobody-mediated ubiquitination was independent of p38 activity. Stimulation of p38 by overexpression of MAP2 kinases MKK3 or MKK6 is sufficient for NLRP1 activation, and NLRP1 is directly phosphorylated by p38. Taken together, we define p38 activation as a unifying signaling hub that controls NLRP1 inflammasome activation by integrating a variety of cellular stress signals relevant to the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.