Monitoring of blood glucose is an invasive, painful and costly practice in diabetes. Consequently, the search for a more cost-effective (reagent-free), non-invasive and specific diabetes monitoring method is of great interest. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used in diagnosis of several diseases, however, applications in the monitoring of diabetic treatment are just beginning to emerge. Here, we used ATR-FTIR spectroscopy to evaluate saliva of non-diabetic (ND), diabetic (D) and insulin-treated diabetic (D+I) rats to identify potential salivary biomarkers related to glucose monitoring. The spectrum of saliva of ND, D and D+I rats displayed several unique vibrational modes and from these, two vibrational modes were pre-validated as potential diagnostic biomarkers by ROC curve analysis with significant correlation with glycemia. Compared to the ND and D+I rats, classification of D rats was achieved with a sensitivity of 100%, and an average specificity of 93.33% and 100% using bands 1452 cm-1 and 836 cm-1 , respectively. Moreover, 1452 cm-1 and 836 cm-1 spectral bands proved to be robust spectral biomarkers and highly correlated with glycemia (R 2 of 0.801 and 0.788, P < 0.01, respectively). Both PCA-LDA and HCA classifications achieved an accuracy of 95.2%. Spectral salivary biomarkers discovered using univariate and multivariate analysis may provide a novel robust alternative for diabetes monitoring using a non-invasive and green technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.