Cell proliferation of the human prostatic carcinoma cell line PC3 and of the epithelial cell strain PMU 23 derived from a primary culture of a stage III prostatic carcinoma was enhanced dose dependently by adding 0.1 nM to 10.0 nM bombesin (BMBS) to the culture medium. The growth stimulation was specifically inhibited by antibodies versus Gastrin Releasing Peptide (GRP) crossreacting with BMBS. Presence of BMBS-positive neuroendocrine cells in human prostate and measurable amounts of BMBS-like peptides in prostatic fluid were reported previously. In a binding assay using 125I-GRP, it was possible to demonstrate the presence of saturable specific receptors on PC3 cells, numerically comparable with those measured on small cell lung cancer cell lines. By immunofluorescence, however, no BMBS immunoreactivity on PC3 cells could be demonstrated. These observations suggest that BMBS plays a role in prostatic epithelium growth and that prostatic carcinoma may have an autocrine or paracrine proliferation stimulus within the gland microenvironment.
Polymorphonuclear leukocyte infiltration and activation into colonic mucosa are believed to play a pivotal role in mediating tissue damage in human ulcerative colitis (UC). Ligands of human CXC chemokine receptor 1 and 2 (CXCR1/R2) are chemoattractants of PMN, and high levels were found in the mucosa of UC patients. To investigate the pathophysiological role played by CXCR2 in experimental UC, we induced chronic experimental colitis in WT and CXCR2 ؊/؊ mice by two consecutive cycles of 4% dextran sulfate sodium administration in drinking water. In wild-type (WT) mice, the chronic relapsing of DSSinduced colitis was characterized by clinical signs and histopathological findings that closely resemble human disease. CXCR2 ؊/؊ mice failed to show PMN infiltration into the mucosa and, consistently with a key role of PMN in mediating tissue damage in UC, showed limited signs of mucosal damage and reduced clinical symptoms. Our data demonstrate that CXCR2 plays a key pathophysiological role in experimental UC, suggesting that CXCR2 activation may represent a relevant pharmacological target for the design of novel pharmacological treatments in human UC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.