Transistors based on various types of nonsilicon nanowires have shown great potential for a variety of applications, especially for those that require transparency and low-temperature substrates. However, critical requirements for circuit functionality, such as saturated source-drain current and matched threshold voltages of individual nanowire transistors in a way that is compatible with low temperature substrates, have not been achieved. Here we show that femtosecond laser pulses can anneal individual transistors based on In(2)O(3) nanowires, improve the saturation of the source-drain current, and permanently shift the threshold voltage to the positive direction. We applied this technique and successfully shifted the switching threshold voltages of NMOS-based inverters and improved their noise margin, in both depletion and enhancement modes. Our demonstration provides a method to trim the parameters of individual nanowire transistors, and suggests potential for large-scale integration of nanowire-based circuit blocks and systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.