Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside two traditional personal PAH exposure assessment methods: active air monitoring with samplers (i.e., polyurethane foam (PUF) and filter) housed in backpacks, and biological sampling with urine. We demonstrate that wristbands worn for 48 h in a non-occupational setting recover semivolatile PAHs, and we compare levels of PAHs in wristbands to PAHs in PUFs-filters and to hydroxy-PAH (OH-PAH) biomarkers in urine. We deployed all samplers simultaneously for 48 h on 22 pregnant women in an established urban birth cohort. Each woman provided one spot urine sample at the end of the 48-h period. Wristbands recovered PAHs with similar detection frequencies to PUFs-filters. Of the 62 PAHs tested for in the 22 wristbands, 51 PAHs were detected in at least one wristband. In this cohort of pregnant women, we found more significant correlations between OH-PAHs and PAHs in wristbands than between OH-PAHs and PAHs in PUFs-filters. Only two comparisons between PAHs in PUFs-filters and OH-PAHs correlated significantly (rs = 0.53 and p = 0.01; rs = 0.44 and p = 0.04), whereas six comparisons between PAHs in wristbands and OH-PAHs correlated significantly (rs = 0.44 to 0.76 and p = 0.04 to <0.0001). These results support the utility of wristbands as a biologically relevant exposure assessment tool which can be easily integrated into environmental health studies. Graphical abstractPAHs detected in samples collected from urban pregnant women Electronic supplementary materialThe online version of this article (10.1007/s00216-018-0992-z) contains supplementary material, which is available to authorized users.
Background: Humans are ubiquitously exposed to flame retardants, including organophosphate esters (OPEs), through direct contact with consumer products or exposure through household dust.Children are at increased risk because of their proximity to dust, hand-to-mouth activity, and the importance of childhood as a critical period in neurodevelopment.Objectives: To quantify differences in exposure levels between mothers and children (three to six years of age), we analyzed urinary metabolites of OPEs. We additionally assessed the ability of silicone wristbands (measuring ambient exposure) to predict urinary metabolite concentrations. Methods: We selected 32 mother and child dyads from an existing cohort. Participants provided baseline urine samples and wore wristbands for one week. After the first week, they returned their wristbands and provided a second urine sample. During the second week, participants wore a second wristband that they returned at the end of week two with a third and final urine sample. Results:We found significantly higher levels of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) (p < 0.001) and lower levels of bis(1-chloro-2-isopropyl) I-hydroxy-2-propyl phosphate (BCIPHIPP) (p < 0.001) in children's urine samples compared to mothers' samples at baseline. We found that triphenylphosphate (TPHP), tris(1,3-dichloroisopropyl) phosphate (TDCIPP), and tris(1-chloro-2-propyl) phosphate (TCIPP) measured in wristbands predicted their respective metabolite levels in urine.
BackgroundUntil their phase-out between 2005 and 2013, polybrominated diphenyl ethers (PBDEs) were added to household products including furniture, rugs, and electronics to meet flammability standards. Replacement brominated flame retardant (BFR) chemicals, including 2-ethylhexyl-2,3,4,5 tetrabromobenzoate (TBB) and bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH), which are components of the Firemaster 550® commercial mixture, are now being used to meet some flammability standards in furniture. The objective of this analysis was to evaluate the extent to which mothers and their children living in New York City are exposed to PBDEs, TBB, and TBPH.MethodsWe measured PBDEs, TBB, and TBPH using gas chromatography mass spectrometry in dust (n = 25) and handwipe (n = 11) samples collected between 2012 and 2013 from mothers and children living in New York City. We defined dust as enriched if the proportional distribution for a given BFR exceeded two-thirds of the total BFR content.ResultsWe detected PBDEs and TBPH in 100% of dust and handwipe samples and TBB in 100% of dust samples and 95% of handwipe samples. Dust from approximately two-thirds of households was enriched for either PBDEs (n = 9) or for TBB + TBPH (n = 8). Overall, the median house dust concentration of TBB + TBPH (1318 ng/g dust) was higher than that of ΣPentaBDE (802 ng/g dust) and BDE-209 (1171 ng/g dust). Children generally had higher BFR handwipe concentrations compared to mothers (ΣPentaBDE: 73%, BDE-209: 64%, TBB + TBPH: 55%) and within households, BFR concentrations from paired maternal-child handwipes were highly correlated. Among mothers, we found a significant positive relation between house dust and handwipe BDE-209 and TBB + TBPH concentrations.ConclusionPBDEs, TBB and TBPH are ubiquitous in house dust and handwipes in a sample of mother-child pairs residing in New York City.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.