The demand for green and efficient energy storage devices in daily life is constantly rising, which is caused by the global environment and energy problems. Lithium-ion batteries (LIBs), an important kind of energy storage devices, are attracting much attention. Graphite is used as LIBs anode, however, its theoretical capacity is low, so it is necessary to develop LIBs anode with higher capacity. Application strategies and research progresses of novel iron oxides and their composites as LIBs anode in recent years are summarized in this review. Herein we enumerate several typical synthesis methods to obtain a variety of iron oxides based nanostructures, such as gas phase deposition, co-precipitation, electrochemical method, etc. For characterization of the iron oxides based nanostructures, especially the in-situ X-ray diffraction and 57Fe Mössbauer spectroscopy are elaborated. Furthermore, the electrochemical applications of iron oxides based nanostructures and their composites are discussed and summarized.Graphic Abstract
In this work, we demonstrated a novel and low-cost full-range optical coherence tomography (FROCT) method. In comparison with the off-pivot approach, which needs precise control of the deflecting distance and should be adjusted for different situations, our proposed method is more flexible without regulating the system itself. Different from the previous systems reported in the literature, which used a high-cost piezo-driven stage to introduce the phase modulation, our system utilizes a cost-effective voice coil motor for retrieving the complex-valued spectral signal. The complex-valued data, with a twofold increase in the accessible depth range, can be calculated using an algorithm based on the Hilbert transform and Dirac delta function. To confirm the effectivity of our method, both simulation and experiments were performed. In particular, for the in vivo experiment, we presented the FROCT result of a fingernail fold, demonstrating the availability of in vivo imaging. Since the key element of our system is a low-cost voice coil motor, which is flexible and more accessible for most of the clinics, we believe that it has great potential to be a clinical modality in the future.
The rise of flexible electronics calls for efficient microbatteries (MBs) with requirements in energy/power density, stability, and flexibility simultaneously. However, the ever‐reported flexible MBs only display progress around certain aspects of energy loading, reaction rate, and electrochemical stability, and it remains challenging to develop a micro‐power source with excellent comprehensive performance. Herein, a reconstructed hierarchical Ni–Co alloy microwire is designed to construct flexible Ni–Zn MB. Notably, the interwoven microwires network is directly formed during the synthesis process, and can be utilized as a potential microelectrode which well avoids the toxic additives and the tedious traditional powder process, thus greatly simplifying the manufacture of MB. Meanwhile, the hierarchical alloy microwire is composed of spiny nanostructures and highly active alloy sites, which contributes to deep reconstruction (≈100 nm). Benefiting from the dense self‐assembled structure, the fabricated Ni–Zn MB obtained high volumetric/areal energy density (419.7 mWh cm−3, 1.3 mWh cm−2), and ultrahigh rate performance extending the power density to 109.4 W cm−3 (328.3 mW cm−2). More surprisingly, the MB assembled by this inherently flexible microwire network is extremely resistant to bending/twisting. Therefore, this novel concept of excellent comprehensive micro‐power source will greatly hold great implications for next‐generation flexible electronics.
The optimization mechanism of ultrafast laser machining is introduced. The specific applications of laser processed 3D micro/nano structures in optical, electrochemical and biomedical fields are elaborated, and perspectives are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.