The placenta contains a large variety of metabolizing enzymes, among them UDP-glucuronosyltransferase (UGT). Several UGT2B isozymes have so far been detected in human placenta, but little is known on placental expression of UGT1A isozymes. The antiepileptic drug lamotrigine (LTG) is a UGT1A4-substrate, and its serum concentration falls by over 50% during pregnancy, leading to impaired seizure control. The placenta may be involved in this. Microsomes from term placentas of 4 LTG-users and 10 healthy control subjects were prepared. Western blot analysis detected UGT1A proteins in all placentas. The presence of UGT1A4 in placenta from LTG users was confirmed with UGT1A4 commercial standard and a specific UGT1A4 primary antibody. Since LTG is primarily metabolized by UGT1A4 and this isozyme is shown to be present in placenta at term, it may be hypothesized that the placenta is involved in the fall of LTG serum concentrations during pregnancy.
Induction of cytochrome P4501A (CYP1A) immunopositive protein was evaluated in the rat hepatoma cell line Fao, as a biomarker of organic pollution in extract of environmental soil samples, exposed to different sources and degrees of chemical contamination. Soil samples were collected in one area in Russia (Monchegorsk) and two areas in Southern Norway (Fiskaa and Birkenes). In addition, one reference soil sample was collected in Central Norway (Høylandet). Contents of selected polycyclic aromatic hydrocarbons (PAHs) in the samples were also evaluated. To further evaluate the inducibility of the most potent soil extract (Fiskaa), S9 fraction of Fao cells, pretreated with this extract, was used as an activation system in the Ames Salmonella assay. The DNA adduct forming capacity of the soil extracts, analyzed by the 32 P-postlabeling technique, was also investigated in Fao cells. The Fao cell line has previously been found to be a very sensitive biomonitoring system, that responds to environmentally relevant concentrations of planar model contaminants with increased level of CYP1A immunopositive protein and DNA adducts. In the present study the Fao cell line also showed its potential for use in evaluating the CYP1A inducing potency of environmental samples. All soil extracts induced CYP1A protein in the Fao cells, although the level of induction varied between the soil samples. The Fiskaa soil extract was the most potent CYP1A inducer and this extract also contained the highest level of PAHs. No significant correlation was observed between the level of the total of 16 PAHs and CYP1A protein level. However, a significant correlation was observed between CYP1A protein level and the level of Benzo[a]pyrene (B[a]P), which is a very potent CYP1A inducer. The S9 fraction of pretreated Fao cells activated B[a]P to mutagens in a concentration-dependent relationship, although the response was weak. No DNA adducts were detected in cells exposed to the soil extracts. This demonstrates the necessity of determining several biomarker parameters simultaneously as one single biomarker may fail to respond to potentially harmful compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.