Calcium binding to troponin C (TnC) activates striated muscle contraction by removing TnI (troponin I) from its inhibitory site on actin. Troponin T (TnT) links TnI with tropomyosin, causing tropomyosin to move from an inhibitory position on actin to an activating position. Positive charges within the C-terminal region of human cardiac TnT limit Ca 2+ activation. We now show that the positively charged region of TnT has an even larger impact on skeletal muscle regulation. We prepared one variant of human skeletal TnT that had the C-terminal 16 residues truncated (Δ16) and another with an added C-terminal Cys residue and Ala substituted for the last 6 basic residues (251C-HAHA). Both mutants reduced (based on S1 binding kinetics) or eliminated (based on acrylodan-tropomyosin fluorescence) the first inactive state of actin at <10 nM free Ca 2+ . 251C-HAHA-TnT and Δ16-TnT mutants greatly increased ATPase activation at 0.2 mM Ca 2+ , even without high-affinity cross-bridge binding. They also shifted the force−pCa curve of muscle fibers to lower Ca 2+ by 0.8−1.2 pCa units (the larger shift for 251C-HAHA-TnT). Shifts in force−pCa were maintained in the presence of para-aminoblebbistatin. The effects of modification of the C-terminal region of TnT on the kinetics of S1 binding to actin were somewhat different from those observed earlier with the cardiac analogue. In general, the C-terminal region of human skeletal TnT is critical to regulation, just as it is in the cardiac system, and is a potential target for modulating activity.
Myonecrosis is a frequent clinical manifestation of envenomings by Viperidae snakes, mainly caused by the toxic actions of secreted phospholipase A2 (sPLA2) enzymes and sPLA2-like homologs on skeletal muscle fibers. A hallmark of the necrotic process induced by these myotoxins is the rapid appearance of hypercontracted muscle fibers, attributed to the massive influx of Ca2+ resulting from cell membrane damage. However, the possibility of myotoxins having, in addition, a direct effect on the contractile machinery of skeletal muscle fibers when internalized has not been investigated. This question is here addressed by using an ex vivo model of single-skinned muscle fibers, which lack membranes but retain an intact contractile apparatus. Rabbit psoas skinned fibers were exposed to two types of myotoxins of Bothrops asper venom: Mt-I, a catalytically active Asp49 sPLA2 enzyme, and Mt-II, a Lys49 sPLA2-like protein devoid of phospholipolytic activity. Neither of these myotoxins affected the main parameters of force development in striated muscle sarcomeres of the skinned fibers. Moreover, no microscopical alterations were evidenced after their exposure to Mt-I or Mt-II. In contrast to the lack of effects on skinned muscle fibers, both myotoxins induced a strong hypercontraction in myotubes differentiated from murine C2C12 myoblasts, with drastic morphological alterations that reproduce those described in myonecrotic tissue in vivo. As neither Mt-I nor Mt-II showed direct effects upon the contractile apparatus of skinned fibers, it is concluded that the mechanism of hypercontraction triggered by both myotoxins in patients involves indirect effects, i.e., the large cytosolic Ca2+ increase after sarcolemma permeabilization.
I Na,late could not be converted to an ''increasing'' morphology by application of isoproterenol, calmodulin, AP-like ramp voltage command or command APs recorded from guinea pig cells. Conventional voltage clamp experiments revealed that the ''increasing'' I Na,late profile in guinea pig is determined by the slow decay of I Na,late in this species. I Na,late was increased by isoproterenol but not by calmodulin in canine myocytes. When APs were recorded from multicellular ventricular preparations with sharp microelectrode, tetrodotoxin decreased AP duration in a reverse rate-dependent manner, which effect was the largest in human, while smaller in canine and the smallest in guinea pig preparations. The shape of I Na,late under the AP is likely determined by the different inactivation kinetics of the sodium channels that generate I Na,late . Variances between different species in the actual sodium channel subtypes that contribute to I Na,late might underlie the differences observed in the macroscopic current. Canine myocytes seems to be the best model of human ventricular cells regarding I Na,late .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.