We present a fully automated multi-sperm tracking algorithm. It has the demonstrated capability to detect and track simultaneously hundreds of sperm cells in recorded videos while accurately measuring motility parameters over time and with minimal operator intervention. Algorithms of this kind may help in associating dynamic swimming parameters of human sperm cells with fertility and fertilization rates. Specifically, we offer an image processing method, based on radar tracking algorithms, that detects and tracks automatically the swimming paths of human sperm cells in timelapse microscopy image sequences of the kind that is analyzed by fertility clinics. Adapting the well-known joint probabilistic data association filter (JPDAF), we automatically tracked hundreds of human sperm simultaneously and measured their dynamic swimming parameters over time. Unlike existing CASA instruments, our algorithm has the capability to track sperm swimming in close proximity to each other and during apparent cell-to-cell collisions. Collecting continuously parameters for each sperm tracked without sample dilution (currently impossible using standard CASA systems) provides an opportunity to compare such data with standard fertility rates. The use of our algorithm thus has the potential to free the clinician from having to rely on elaborate motility measurements obtained manually by technicians, speed up semen processing, and provide medical practitioners and researchers with more useful data than are currently available.
Social robotic assistants have been widely studied and deployed as telepresence tools or caregivers. Evaluating their design and impact on the people interacting with them is of prime importance. In this research, we evaluate the usability and impact of ARMAR-6, an industrial robotic assistant for maintenance tasks. For this evaluation, we have used a modified System Usability Scale (SUS) to assess the general usability of the robotic system and the Godspeed questionnaire series for the subjective perception of the coworker. We have also recorded the subjects' gaze fixation patterns and analyzed how they differ when working with the robot compared to a human partner.
Computer-Assisted Semen Analysis (CASA) enables reliable analysis of semen images, and is designed to process large number of images with high consistency, accuracy, and repeatability. Design and testing of CASA algorithms can be accelerated greatly if reliable simulations of semen images under a variety of conditions and sample quality modes are available. Using life-like simulation of semen images can quantify the performance of existing and proposed CASA algorithms, since the parameters of the simulated image are known and controllable. We present simulation models for sperm cell image and swimming modes observed in real 2D (top-down) images of sperm cells in laboratory specimen. The models simulate human sperm using four (4) types of swimming, namely linear mean, circular, hyperactive, and immotile (or dead). The simulation models are used in studying algorithms for segmentation, localization, and tracking of sperm cells. Several segmentation and localization algorithms were tested under varying levels of noise, and then compared using precision, recall, and the optimal subpattern assignment (OSPA) metric. Images of real human semen sample were used to validate the segmentation and localization observations obtained from simulations. An example is given of sperm cell tracking on simulated semen images of cells using the different tracking algorithms (nearest neighbor (NN), global nearest neighbor (GNN), probabilistic data association filter (PDAF), and joint probabilistic data association filter (JPDAF)). Tracking performance was evaluated through multi-object tracking precision (MOTP) and multi-object tracking accuracy (MOTA). Simulation models enable objective assessments of semen image processing algorithms. We demonstrate the use of a new simulation tool to assess and compare segmentation, localization, and tracking methods. The simulation software allows testing along a large spectrum of parameter values that control the appearance and behavior of simulated semen images. Users can generate scenarios of different characteristics and assess the effectiveness of different CASA algorithms in these environments. The simulation was used to assess and compare algorithms for segmentation and tracking of sperm cells in semen images.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.