Based on ICP-MS, ICP-OES, HG-AAS, CV-AAS and elementary instrumental analysis of King Bolete collected from four sites of different soil bedrock geochemistry considered could be as mushroom abundant in certain elements. King's Bolete fruiting bodies are very rich in K (> 20 mg/g dry weight), rich in Ca, Mg, Na, Rb and Zn (> 100 microg/g dw), and relatively also rich in Ag, Cd, Cs, Cu, Fe, Mn and Se (> 10 microg/g dw). The caps of King Bolete when compared to stipes around two-to three-fold more abundant are in Ag, Cd, Cs, Cu, Hg, K, Mg, Mo, N, Rb, Se and Zn. King Bolete collected at the lowland and mountain sites showed Ag, Ba, Co, Cr, Hg, K, Mg, Mn, Mo and Na in caps in comparable concentrations, and specimens from the mountain areas accumulated more Cd and Sb. Elements such as Al, Pb and Rb occurred at relatively elevated concentration in King Bolete picked up at the metal ores-rich region of the Sudety Mountains. Because of high bioconcentration potential King Bolete at the background sites accumulate in fruiting bodies great concentrations of problematic elements such as Cd, Pb and Hg, i.e. up to nearly 20, 3 and 5 microg/g dw, on the average, respectively. The interdependence among determined mineral elements examined were using the principal components analysis (PCA) method. The PCA explained 56% of the total variance. The metals tend to cluster together (Ba, Cd, Cs, Cr, Ga, Rb, Se, Sr and V; K and Mg; Cu and Mo). The results provided useful environmental and nutritional background level information on 26 minerals as the composition of King Bolete from the sites of different bedrock soil geochemistry.
Thirty-eight elements, including toxic cadmium, lead, mercury, silver and thallium, were determined in 18 species of wild edible mushrooms collected from several sites in Pomorskie Voivodeship in northern Poland in 1994. Elements were determined by double focused high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), after wet digestion of the dried samples with concentrated nitric acid in closed PTFE vessels using a microwave oven. K, P and Mg were present at levels of mg/g dry matter; Na, Zn, Ca, Fe, Cu, Mn, Rb, Ag, Cd, Hg, Pb, Cs, Sr, Al and Si were present at microg/g levels, while Tl, In, Bi, Th, U, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, La, Lu and Ba were present at ng/g levels.
This study aimed to provide basic data on the composition of metallic elements, including toxicologically important Cd and Hg, in popular and prized wild King Bolete mushrooms. We investigated the importance of soil substratum as a source of these metals. ICP-OES and CV-AAS were applied to determine the profile of Al, Ba, Ca, Cd, Cu, Fe, Hg, K, Mg, Mn, Na, Sr and Zn in caps and stipes of King Bolete mushroom and in the surface layer of soil (0-10 cm) from the Płocka Dale area of Poland. Hg, Cu, Cd, Zn, Mg and K exhibited bioconcentration factors (BCF) > 1. Specifically, Hg, Cu and Cd (mean BCFs for caps were 110, 19 and 16, respectively) were efficiently bioconcentrated by King Bolete, while other elements were bioexcluded (BCF < 1). Cadmium was present in the caps at mean levels of 5.5 ± 2.4 mg kg(-1) dry weight (dw) and mercury at levels of 4.9 ± 1.4 mg kg(-1) dw, both occurring at elevated concentrations in those King Bolete mushrooms surveyed.
Thirty-eight elements, including toxic cadmium, lead, mercury, silver and thallium, were determined in 18 species of wild edible mushrooms collected from several sites in Pomorskie Voivodeship in northern Poland in 1994. Elements were determined by double focused high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), after wet digestion of the dried samples with concentrated nitric acid in closed PTFE vessels using a microwave oven. K, P and Mg were present at levels of mg/g dry matter; Na, Zn, Ca, Fe, Cu, Mn, Rb, Ag, Cd, Hg, Pb, Cs, Sr, Al and Si were present at microg/g levels, while Tl, In, Bi, Th, U, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, La, Lu and Ba were present at ng/g levels.
A survey of 26 metallic elements and metalloids such as Ag, Al, Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Rb, Sb, Se, Sr, Tl, V and Zn was carried out using ICP-MS, ICP-OES, HG-AAS and CV-AAS in the caps and stalks of edible mushroom Brown Birch Scaber Stalk collected from two lowland and one mountain sites in Poland. Ag, Al, Cd, Cr, Cs, Cu, Fe, Hg, K, Mg, Mo, Pb, Rb, Se, V and Zn occurred in greater concentration in the caps than stalks of Brown Birch Scaber Stalk, and opposite situation was for Tl and Na. Brown Birch Scaber Stalk collected from the site in Sudety Mountains did contain Al, Ba, Cs, Fe, Ga, Ni, Pb, Sr and V in significantly greater concentration when compared to specimens collected from the lowland sites, and what imply on significance of geological origin and/or soil substrate pollution impacting on mineral composition of this mushroom species. The results provide useful environmental and nutritional baseline level information on mineral composition of Brown Birch Scaber Stalk from unpolluted sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.