BackgroundThe microbial community in anaerobic digestion is mainly monitored by means of DNA-based methods. This may lead to incorrect interpretation of the community parameters, because microbial abundance does not necessarily reflect activity. In this research, the difference between microbial community response on DNA (total community) and RNA (active community) based on the 16S rRNA (gene) with respect to salt concentration and response time was evaluated.ResultsThe application of higher NaCl concentrations resulted in a decrease in methane production. A stronger and faster response to salt concentration was observed on RNA level. This was reflected in terms of microbial community composition and organization, as richness, evenness, and overall diversity were differentially impacted. A higher divergence of community structure was observed on RNA level as well, indicating that total community composition depends on deterministic processes, while the active community is determined by stochastic processes. Methanosaeta was identified as the most abundant methanogen on DNA level, but its relative abundance decreased on RNA level, related to salt perturbation.ConclusionsThis research demonstrated the need for RNA-based community screening to obtain reliable information on actual community parameters and to identify key species that determine process stability.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0652-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.