Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations.Location The Swiss Alps and the Carpathians.Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species' range.Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (F ST = 0.19) than among Alpine populations (F ST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species' range, i.e. in the Carpathians.Main conclusions The populations of P. cembra within the two parts of the species' range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species' evolutionary history.
Recently, major advances in the climatezooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of ecology is of particular applicability in climate change research owing to the inherently predictive nature of this field. In the future, ecologists should expand their research on species beyond daphnids, should address questions as to how different intrinsic and extrinsic drivers interact, should move beyond correlative approaches toward more mechanistic explanations, and last but not least, should facilitate transfer of biological data both across space and time.
Abstract. This review discusses the connection between quantitative changes of environmental factors and oribatid communities. With the overview of available studies, it can be clearly explored how various characteristics of Oribatid communities are modified due to changes in moisture, temperature, heavy metal concentration, organic matter content and level of disturbance. The most important question concerning the application of Oribatids as indicators is to clarify what kind of information content does natural Oribatid coenological patterns possess from the aspect of bioindication. Most of the variables listed above can be directly measured, since rapid methods are available to quantify parameters of the soil. Responses of Oribatids are worth to study in a more complex approach. Even now we have an expansive knowledge on how communities change due to modifications of different factors. These pieces of information necessitate the elaboration of such methods which render Oribatid communities suitable for the task to prognosticate what extent the given site can be considered near-natural or degraded, based on the Oribatid composition of a single sample taken from the given area. Answering this problem needs extensive and coordinated work.
Abstract. After giving an overview of climate change induced vegetation shifts in the Palearctic region in our previous paper, in this article we review literature available in Web of Science on North and South America. We study different geographical regions such as Canada, Alaska, California, Southwestern, Eastern and Southeastern USA, the Great Lakes region, the Great Plains, intermontane basins and plateaus, Rocky Mountains and the Cascades as well as Central and South America. We summarize main results of relevant field studies, experiments and model simulations. Predicted environmental changes include temperature increases, altering precipitation patterns, droughts, permafrost thaw and ground subsidence in arctic regions, enhanced El Niño Southern Oscillation, sea level rise, increasing salinity of the vadose zone, snowpack declines and various disturbances. All vegetation types are affected by these changes, to the most important phenomena belong e.g. reduction of arctic and alpine communities, decreasing area of taiga, shrub encroachment in tundra areas, northward expansion of the tree line, reduction in wetland areas, invasion, altering forest regeneration patterns, decrease in dominance of conifer species, increased cover of salt-tolerant plant species in tidal marshes, expansion of grassland, compositional and structural changes of grasslands and forests, drying up of bogs, landward migration of mangroves, savannification of forests, expansion of chaparral as well as upward migration of species in the mountains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.