One Sentence Summary: Empirical evidence from grasslands around the world demonstrates a humped-back relationship between plant species richness and biomass at the 1 m 2 plot scale.Abstract: One of the central problems of ecology is the prediction of species diversity. The humped-back model (HBM) suggests that plant diversity is highest at intermediate levels of productivity; at low productivity few species can tolerate the environmental stresses and at high productivity a small number of highly competitive species dominate. A recent study claims to have comprehensively refuted the HBM. Here we show, using the largest, most geographically diverse dataset ever compiled and specifically built for testing this model that if the conditions are met, namely a wide range in biomass at the 1 m 2 plot level and the inclusion of plant litter, the relationship between plant biomass and species richness is hump shaped, supporting the HBM. Our findings shed new light on the prediction of plant diversity in grasslands, which is crucial for supporting management practices for effective conservation of biodiversity. 4Main Text: The relationship between plant diversity and productivity is a topic of intense debate (1-6). The HBM states that plant species richness peaks at intermediate productivity, taking above-ground biomass as a proxy for annual net primary productivity (ANPP) (7-9). This diversity peak is driven by two opposing processes; in unproductive and disturbed ecosystems where there is low plant biomass, species richness is limited by either stress, such as insufficient water and mineral nutrients, or high levels of disturbance-induced removal of biomass, which few species are able to tolerate. In contrast, in the low disturbance and productive conditions that generate high plant biomass it is competitive exclusion by a small number of highly competitive species that is hypothesized to constrain species richness (7-9). Other mechanisms proposed to explain the unimodal relationship between species richness and productivity include disturbance (10), evolutionary history and dispersal limitation (11,12), and density limitation affected by plant size (13).Different case studies have supported or rejected the HBM, and three separate meta-analyses reached different conclusions (14). This inconsistency may indicate a lack of generality of the HBM, or it may reflect a sensitivity to study characteristics including the type(s) of plant communities considered, the taxonomic scope, the length of the gradient sampled, the spatial grain and extent of analyses (14,15), and the particular measure of net primary productivity (16). Although others would argue (6), we maintain that the question remains whether the HBM serves as a useful and general model for grassland ecosystem theory and management. 5 We quantified the form and strength of the richness-productivity relationship using novel data from a globally-coordinated (17), distributed, scale-standardized and consistently designed survey, in which plant richness and biomass were m...
Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations.Location The Swiss Alps and the Carpathians.Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species' range.Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (F ST = 0.19) than among Alpine populations (F ST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species' range, i.e. in the Carpathians.Main conclusions The populations of P. cembra within the two parts of the species' range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species' evolutionary history.
Silver fir ( Abies alba Mill.) is a keystone conifer of European montane forest ecosystems that has experienced large fluctuations in population size during during the Quaternary and, more recently, due to land-use change. To forecast the species’ future distribution and survival, it is important to investigate the genetic basis of adaptation to environmental change, notably to extreme events. For this purpose, we here provide a first draft genome assembly and annotation of the silver fir genome, established through a community-based initiative. DNA obtained from haploid megagametophyte and diploid needle tissue was used to construct and sequence Illumina paired-end and mate-pair libraries, respectively, to high depth. The assembled A. alba genome sequence accounted for over 37 million scaffolds corresponding to 18.16 Gb, with a scaffold N50 of 14,051 bp. Despite the fragmented nature of the assembly, a total of 50,757 full-length genes were functionally annotated in the nuclear genome. The chloroplast genome was also assembled into a single scaffold (120,908 bp) that shows a high collinearity with both the A. koreana and A. sibirica complete chloroplast genomes. This first genome assembly of silver fir is an important genomic resource that is now publicly available in support of a new generation of research. By genome-enabling this important conifer, this resource will open the gate for new research and more precise genetic monitoring of European silver fir forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.