Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for numerous applications including energy storage, heterogeneous catalysis, and greenhouse gas adsorption. Much of the early work has focused on the bulk properties of microcrystalline ZIFs. Herein, we focus on identifying the nature of the surface of ZIF-8 by studying a supported ZIF-8 nanoparticle film using surface characterization techniques. We have experimentally identified the presence of a zinc-rich surface terminated by carbonates and water/hydroxyl groups (in addition to the expected methylimidazole terminations) using X-ray photoelectron spectroscopy (XPS). The thermal stability of ZIF-8 thin films was also investigated using scanning electron microscopy (SEM) and temperature-programmed reaction spectroscopy (TPRS). We determined the onset of decomposition of ZIF-8 thin films to be approximately 630 K using TPRS in an ultrahigh vacuum (UHV) environment. This work presents the first characterization steps needed to study the evolution of ZIF surfaces in situ using surface characterization techniques. Such techniques are capable of determining reaction products and tracking intermediates and surface evolution in gas adsorption/reaction studies of thin films.
The catalytic reduction of O2 to H2O is important for energy transduction in both synthetic and natural systems. Herein, we report a kinetic and thermochemical study of the oxygen reduction reaction (ORR) catalyzed by iron tetraphenylporphyrin (Fe(TPP)) in N,N′-dimethylformamide using decamethyl-ferrocene as a soluble reductant and para-toluenesulfonic acid (pTsOH) as the proton source. This work identifies and characterizes catalytic intermediates and their thermochemistry, providing a detailed mechanistic understanding of the system. Specifically, reduction of the ferric porphyrin, [FeIII(TPP)]+, forms the ferrous porphyrin, FeII(TPP), which binds O2 reversibly to form the ferric-superoxide porphyrin complex, FeIII(TPP)((O2•−). The temperature dependence of both the electron transfer and O2 binding equilibrium constants has been determined. Kinetic studies over a range of concentrations and temperatures show that the catalyst resting state changes during the course of each catalytic run, necessitating the use of global kinetic modeling to extract rate constants and kinetic barriers. The rate-determining step in oxygen reduction is the protonation of FeIII(TPP)((O2•−) by pTsOH, which proceeds with a substantial kinetic barrier. Computational studies indicate that this barrier for proton transfer arises from an unfavorable preassociation of the proton donor with the superoxide adduct and a transition state that requires significant desolvation of the proton donor. Together, these results are the first example of oxygen reduction by iron tetraphenylporphyrin where the pre-equilibria among ferric, ferrous, and ferric-superoxide intermediates have been quantified under catalytic conditions. This work gives a generalizable model for the mechanism of iron porphyrin-catalyzed ORR and provides an unusually complete mechanistic study of an ORR reaction. More broadly, this study also highlights the kinetic challenges for proton transfer to catalytic intermediates in organic media.
Chip-scale integration of electronics and photonics is recognized as important to the future of information technology, as is the exploitation of the best properties of electronics, photonics, and plasmonics to achieve this objective. However, significant challenges exist including matching the sizes of electronic and photonic circuits; achieving low-loss transition between electronics, photonics, and plasmonics; and developing and integrating new materials. This review focuses on a hybrid material approach illustrating the importance of both chemical and engineering concepts. Silicon–organic hybrid (SOH) and plasmonic–organic hybrid (POH) technologies have permitted dramatic improvements in electro-optic (EO) performance relevant to both digital and analog signal processing. For example, the voltage–length product of devices has been reduced to less than 40 Vμm, facilitating device footprints of <20 μm2 operating with digital voltage levels to frequencies above 170 GHz. Energy efficiency has been improved to around a femtojoule/bit. This improvement has been realized through exploitation of field enhancements permitted by new device architectures and through theory-guided improvements in organic electro-optic (OEO) materials. Multiscale theory efforts have permitted quantitative simulation of the dependence of OEO activity on chromophore structure and associated intermolecular interactions. This has led to new classes of OEO materials, including materials of reduced dimensionality and neat (pure) chromophore materials that can be electrically poled. Theoretical simulations have helped elucidate the observed dependence of device performance on nanoscopic waveguide dimensions, reflecting the importance of material interfaces. The demonstration and explanation of the dependence of in-device electro-optic activity, voltage–length product, and optical insertion loss on device architecture (e.g., slot width) suggest new paradigms for further dramatic improvement of performance.
CONSPECTUS: Organic glasses containing chromophores with large first hyperpolarizabilities (β) are promising for compact, high-bandwidth, and energy-efficient electro-optic devices. Systematic optimization of device performance requires development of materials with high acentric order and enhanced hyperpolarizability at operating wavelengths. One essential component of the design process is the accurate calculation of optical transition frequencies and hyperpolarizability. These properties can be computed with a wide range of electronic structure methods implemented within commercial and open-source software packages. A wide variety of methods, especially hybrid density-functional theory (DFT) variants have been used for this purpose. However, in order to provide predictions useful to chromophore designers, a method must be able to consistently predict the relative ordering of standard and novel materials. Moreover, it is important to distinguish between the resonant and nonresonant contribution to the hyperpolarizabiliy and be able to estimate the trade-off between improved β and unwanted absorbance (optical loss) at the target device's operating wavelength. Therefore, we have surveyed a large variety of common methods for computing the properties of modern high-performance chromophores and compared these results with prior experimental hyper-Rayleigh scattering (HRS) and absorbance data. We focused on hybrid DFT methods, supplemented by more computationally intensive Møller-Plesset (MP2) calculations, to determine the relative accuracy of these methods. Our work compares computed hyperpolarizabilities in chloroform relative to standard chromophore EZ-FTC against HRS data versus the same reference. We categorized DFT methods used by the amount of Hartree-Fock (HF) exchange energy incorporated into each functional. Our results suggest that the relationship between percentage of long-range HF exchange and both βHRS and λmax is nearly linear, decreasing as the fraction of long-range HF exchange increases. Mild hybrid DFT methods are satisfactory for prediction of λmax. However, mild hybrid methods provided qualitatively incorrect predictions of the relative hyperpolarizabilities of three high-performance chromophores. DFT methods with approximately 50% HF exchange, and especially the Truhlar M062X functional, provide superior predictions of relative βHRS values but poorer predictions of λmax. The observed trends for these functionals, as well as range-separated hybrids, are similar to MP2, though predicting smaller absolute magnitudes for βHRS. Frequency dependence for βHRS can be calculated using time-dependent DFT and HF methods. However, calculation quality is sensitive not only to a method's ability to predict static hyperpolarizability but also to its prediction of optical resonances. Due to the apparent trade-off in accuracy of prediction of these two properties and the need to use static finite-field methods for MP2 and higher-level hyperpolarizability calculations in most codes, we suggest that composite m...
The efficient removal of pertechnetate (TcO4(-)) anions from liquid waste or melter off-gas solution for an alternative treatment is one of the promising options to manage (99)Tc in legacy nuclear waste. Safe immobilization of (99)Tc is of major importance because of its long half-life (t1/2 = 2.13 × 10(5) yrs) and environmental mobility. Different types of inorganic and solid-state ion-exchange materials have been shown to absorb TcO4(-) anions from water. However, both high capacity and selectivity have yet to be achieved in a single material. Herein, we show that a protonated version of an ultrastable zirconium-based metal-organic framework can adsorb perrhenate (ReO4(-)) anions, a nonradioactive surrogate for TcO4(-), from water even in the presence of other common anions. Synchrotron-based powder X-ray diffraction and molecular simulations were used to identify the position of the adsorbed ReO4(-) (surrogate for TcO4(-)) molecule within the framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.