Spatial analysis plays a prominent role in revealing and characterizing the spatial patterns over a geographical region by considering both the attributes of objects in a data set and their locations. The response variable can display spatial autocorrelation. The objects close together tend to produce more similar observations than objects further apart. Despite covariates in the model, we cannot capture spatial autocorrelation explicitly. It remains in the model residuals. Then, the independence assumption is violated by the residuals. We apply conditional autoregressive (CAR) model to prevent the residual spatial autocorrelation. In this study, we consider the problem of identifying the provinces at high risk to respiratory diseases mortality in Turkey. The number of deaths from respiratory diseases in 81 provinces of Turkey are modelled by using Leroux Model. We assume that the observed number of deaths have a Poisson distribution. Disease mapping is performed over calculated risk values. The results show that an increase in the household consumption of alcoholic beverages, cigarettes and tobacco and, also in the rate of people aged over 65 years in a province trigger a significant increase in respiratory disease mortality. Furthermore, Kastamonu has the highest mortality risk from respiratory diseases.
Response surface model (RSM) is used to detect the variable values that make the response variable maximum or minimum. Besides, the effect of exploratory variables on the response variable is determined. Thus, this method can be referred as a combination of regression analysis and optimization. RSM is mostly used in many fields such as industry and chemistry. However, it has limited application in the field of health. The upper limb performance assessment is a two-stage assessment of upper limb contributions to task performance. In this study, the upper limb performance of chronic neck pain patients is examined on 63 patients. The upper extremity functional index (UEFI-20) identifying the performance of upper limb is assigned as response variable. Input variables are taken as the variables related the pain-rating scales of patients at rest or in activity. The central composite model is implemented to estimate the model. The artificial neural network (ANN) approach is also applied to upper limb performance data. The mean absolute error, correlation coefficients, standard error of prediction are obtained from evaluating the experimental and predicted values of both models. The comparative analysis for both models is made on the prediction accuracy.
Mekânsal veri türlerinden birisi olan alansal verilerde gözlem değerleri mekâna bağlı olarak değiştiği için gözlem değerleri arasında mekânsal otokorelasyon ortaya çıkar. Mekânsal modellerde mekân bilgisinin modele katılabilmesi için alanların ilişkilerini tanımlayan komşuluk matrisinin oluşturulması gerekir. Bu nedenle mekânsal otokorelasyonu dikkate alan modellerin kullanımı son yıllarda yaygınlaşmıştır. Genelleştirilmiş Doğrusal Modeller (GDM), mekânsal otokorelasyonun modellenmesinde yetersiz kalmaktadır. Koşullu Otoregresif Bayes (CARBayes) modeli ile daha önceden deprem verilerinin modellenmesi ile ilgili bir çalışma yapılmamıştır. Bu yüzden, bu çalışmada 2016 yılında Türkiye’de meydana gelen deprem sayıları kullanılarak CARBayes modelinin kullanımı önerilmiştir. CARBayes modeli Genelleştirilmiş Doğrusal Mekânsal Model (GDMM) formundadır. Verilerde alansal birim olarak “iller” alınmış ve komşuluk matrisleri oluşturulurken idari bölünüş sınırları dikkate alınmıştır. Oluşturulan komşuluk matrisi üzerinden kurulan permütasyon testi sonucunda deprem sayılarında mekânsal ilişki çıkmıştır. Bu yüzden, deprem sayıları ile ortalama deprem büyüklüğü arasındaki ilişki için GDMM’de mekân bilgisi komşuluk matrisi yardımı ile rastgele etki olarak modele eklenmiştir. Böylece artıklardaki otokorelasyon problemi çözülmüş ve tahmin değerleri elde edilmiştir. Tahmin değerlerinden yararlanılarak bir risk değeri hesaplanmış ve haritalandırma aracılığıyla riskli iller belirlenmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.