We tested whether cannabinoids (CBs) potentiate alcohol-induced birth defects in mice and zebrafish, and explored the underlying pathogenic mechanisms on Sonic Hedgehog (Shh) signaling. The CBs, Δ9-THC, cannabidiol, HU-210, and CP 55,940 caused alcohol-like effects on craniofacial and brain development, phenocopying Shh mutations. Combined exposure to even low doses of alcohol with THC, HU-210, or CP 55,940 caused a greater incidence of birth defects, particularly of the eyes, than did either treatment alone. Consistent with the hypothesis that these defects are caused by deficient Shh, we found that CBs reduced Shh signaling by inhibiting Smoothened (Smo), while Shh mRNA or a CB1 receptor antagonist attenuated CB-induced birth defects. Proximity ligation experiments identified novel CB1-Smo heteromers, suggesting allosteric CB1-Smo interactions. In addition to raising concerns about the safety of cannabinoid and alcohol exposure during early embryonic development, this study establishes a novel link between two distinct signaling pathways and has widespread implications for development, as well as diseases such as addiction and cancer.
BackgroundCyclic guanosine monophosphate (cGMP)‐specific phosphodiesterase (PDE5A) is the target of phosphodiesterase inhibitors such as sildenafil. Polymorphisms in the PDE5A gene that may predict response to therapy with sildenafil and nitric oxide, be linked to disease progression, and aid in risk assessment have been identified in human beings. Identification of polymorphisms in PDE5A could affect the physiologic actions of PDE5A and the effects of phosphodiestrase type 5 inhibitor drugs.Hypothesis/ObjectiveFunctional polymorphisms exist in the canine PDE5A gene. Specific objectives were to identify PDE5A polymorphisms and evaluate their functional relevance.AnimalsSeventy healthy dogs.MethodsThe exonic, splice‐site, 3′ and 5′ untranslated regions of the canine PDE5A gene were sequenced in 15 dogs and aligned with the canine reference sequence. Identified polymorphisms were evaluated in 55 additional, healthy, unrelated dogs of 20 breeds. Plasma was collected from 51 of these dogs and cGMP was measured. An unpaired t‐test and one‐way ANOVA with Dunnett's test of multiple comparisons were used to evaluate the effect of genotype on cGMP.ResultsA common exonic polymorphism was identified that changed glutamic acid to lysine and resulted in significantly lower cGMP concentrations in the group with polymorphism versus the wild type group (P = .014). Additionally, 6 linked single nucleotide polymorphisms in the 3′ untranslated region were identified that did not alter cGMP concentrations.Conclusions and Clinical ImportanceA polymorphism exists in the canine PDE5A gene that is associated with variable circulating cGMP concentrations in healthy dogs and warrants investigation in diseases such as pulmonary hypertension.
Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.
ADRB1 deletions appear to have structural and functional consequences. Individual genome-based treatment recommendations could impact the management of dogs with heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.