To uncover the molecular mechanisms underlying GABA accumulation in giant embryo rice seeds, we analyzed the expression levels of GABA metabolism genes and contents of GABA and GABA metabolic intermediates in developing grains and germinated brown rice of giant embryo rice 'Shangshida No. 5' and normal embryo rice 'Chao2-10' respectively. In developing grains, the higher GABA contents in 'Shangshida No. 5' were accompanied with upregulation of gene transcripts and intermediate contents in the polyamine pathway and downregulation of GABA catabolic gene transcripts, as compared with those in 'Chao2-10'. In germinated brown rice, the higher GABA contents in 'Shangshida No. 5' were parallel with upregulation of OsGAD and polyamine pathway gene transcripts and Glu and polyamine pathway intermediate contents and downregulation of GABA catabolic gene transcripts. These results are the first to indicate that polyamine pathway and GABA catabolic genes play a crucial role in GABA accumulation in giant embryo rice seeds.
'Shangshida No. 5' is a new variety of giant embryo rice derived from a single-point mutation of the giant embryo gene (ge) in 'Chao2-10' rice. This study quantified the levels of eight vitamin E homologues (α-, β-, γ-, and δ-tocopherol and α-, β-, γ-, and δ-tocotrienol) in brown rice, embryos, endosperm, and developing seeds of giant embryo and normal embryo rice using a normal phase high-performance liquid chromatographic method. Quantitative RT-PCR analysis was conducted to reveal the different expression patterns of the ge gene and tocochromanol biosynthesis genes in developing giant and normal embryo seeds. The total vitamin E content in 'Shangshida No. 5' brown rice was 52.54 mg α-tocopherol equivalent (α-TE)/kg, of which α-tocopherol constituted 49.14 mg/kg, which was approximately 2.2-fold greater than that in 'Chao2-10' brown rice. In giant embryo seeds, the expression level of the ge gene was higher than that in normal embryo seeds during early developmental stages. These results are the first to indicate that coup-regulated expression of the OsHPPD, OsHPT, and OsMPBQ MT2 genes might be the primary reason for the large accumulation of α-tocopherol in giant embryo rice seeds. The different transcription pattern of the tocochromanol biosynthesis genes in 'Shangshida No. 5' rice seeds compared with 'Chao2-10' rice seeds is attributable to the ge mutation and the different expression level of the ge gene in giant embryo seeds.
BackgroundSwine hepatitis E virus (swHEV) is a zoonotic disease that is considered a major problem in pig production and presents a threat to human health. Elucidation of the major antigenic epitopes of swHEV is essential for the effective control of swHEV epidemics.ResultsBy bioinformatic analysis, we identified and then synthesized 12 peptides from open reading frames (ORFs) ORF1, ORF2 and ORF3, including swHEV-1 - swHEV-12. Using the results from ELISA, we selected swHEV-11 as the best candidate antigen and used it as a coating antigen for the development of peptide-based swine anti-HEV ELISA kits. The coefficient of variation (CV) the coefficient of variation (CV) varied between 4.3-7.2% in the same batch, and between 8.2-17.7% in six different batches. When comparing our swine peptide-based kit with the commercial recombinant-based kit, the humane anti-HEV IgG test had a 73.4% correspondence rate for them.ConclusionThis is the first systemic study to screen the diagnostic peptides of swHEV and our findings strongly suggest that peptide swHEV-11 is a potent diagnostic reagent of swHEV that could be used in the development of highly efficient diagnostic assays for the specific and highly sensitive detection of anti-HEV activity in swine serum samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.