Abstract-A novel approach for the design of a compact multiband planar microstrip antenna is presented. This type of antenna is composed of composite metamaterial resonators (including conditional microstrip resonators and metamaterial resonators), and fed by signal feed. A sample antenna with composite closed-ring resonator and split-ring resonator (SRR) fed by 50 Ω coplanar waveguide (CPW) developed on FR4 epoxy substrate for multi-band wireless communication applications is presented. Appropriate design of the composite structure resulted in three discontinuous resonant bands. The fundamental magnetic resonant and electric resonant frequency of SRR and the first electric resonant frequency of the closed-ring resonator were combined to form low, middle, and high resonant band. The properties of this antenna are investigated by theoretical analysis and finite element method (FEM) simulations. The numerical results show that the proposed antenna has good impedance bandwidth and radiation characteristics in the three operating bands which cover the required band widths of the 2.4/5.2/5.8 GHz wireless local-area networks (WLAN) and 3.5/5.5 GHz worldwide interoperability for microwave access (WiMax) with return loss of better than 10 dB. The antenna also has stably omni-directional H-plane radiation patterns within the three operating bands.
We synthesize and systematically characterize a novel type of magnetically tunable metamaterial absorber (MA) by integrating ferrite as a substrate or superstrate into a conventional passive MA. The nearly perfect absorption and tunability of this device is studied both numerically and experimentally within X-band (8-12 GHz) in a rectangular waveguide setup. Our measurements clearly show that the resonant frequency of the MA can be shifted across a wide frequency band by continuous adjustment of a magnetic field acting on the ferrite. Moreover, the effects of substrate/superstrate's thickness on the MA's tunability are discussed. The insight gained from the generic analysis enabled us to design an optimized tunable MA with relative frequency tuning range as larger as 11.5% while keeping the absorptivity higher than 98.5%. Our results pave a path towards applications with tunable devices, such as selective thermal emitters, sensors, and bolometers.
A symmetrical dual-beam end-fire bowtie antenna with gain enhancement is achieved by integrating three pairs of metamaterial (MTM) arrays for 5G MIMO applications. The first pair of MTM array with high refractive index (HRI) are deployed to form a wide beam antenna. The second pair of HRI MTM array are arranged along the end-fire direction (x-direction) in front of the radiators in order to split the single wide beam into dual beam. Besides, the third pair of anisotropic MTM array with HRI along x-direction and near zero refractive along y-direction are incorporated in front of the second pair of MTM array to improve the gain performance. The proposed technique is verified by both the full-wave electromagnetic simulation and experiment, and the simulated and measured results agree very well with each other. Moreover, the measured results reveal that the main beam directions of the proposed antenna point to ±30 • with respect to the end-fire direction (0 •) over 24.25-27.5 GHz, with a maximum gain of 7.4 dBi at 26 GHz and a 4.2 dB gain improvement compared to the wide beam antenna.
Although the microstrip antenna has been extensively studied in the past few decades as one of the standard planar antennas, it still has a huge potential for further developments. The paper suggests three areas for further research based on our previous works on microstrip antenna elements and arrays. One is exploring the variety of microstrip antenna topologies to meet the desired requirement such as ultrawide band (UWB), high gain, miniaturization, circular polarization, multipolarized, and so on. Another is to apply microstrip antenna to form composite antenna which is more potent than the individual antenna. The last is growing towards highly integration of antenna/array and feeding network or operating at relatively high frequencies, like sub-millimeter wave or terahertz (THz) wave regime, by using the advanced machining techniques. To support our points of view, some examples of antennas developed in our group are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.