The surface of commercially pure titanium was modified by anodization treatment in a phosphoric acid solution at different voltages: 100 V, 200 V and 300 V. The surface characteristics of anodic TiO2 layers and their influence on the cell response were investigated. Micrographs by scanning electron microscopy revealed that the dense and uniform oxide layer obtained at 100 V exhibits a nanostructured surface which is similar to the surface of natural tooth cementum. In contrast, porous oxide layers without nanometer features were produced at higher voltages. Thin film x-ray diffraction analysis confirmed the existence of anatase in the oxide layer obtained at 300 V, but not in oxide layers obtained at 100 V and 200 V. The in vitro biocompatibility study of oxide layers demonstrated greater cell adhesion and proliferation of the oxide layer obtained at 100 V compared to the other two kinds of oxide layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.