The surface plasmon resonances of
gold contour bowtie nanostructures
were simulated in the present study. The local electromagnetic field
enhancement and the resonance wavelength for different dimensions
of contour bowtie antennas with various contour thicknesses were investigated
to find the critical conditions to induce additional enhancement compared
to the solid bowtie antenna. Both the phase of the electric field
and the bound surface charge distribution on the surface of the contour
bowtie were studied to characterize the coupled plasmon configurations
of the contour bowtie antenna. Also, a model was proposed to explain
the resonance and hybridization behavior in the contour bowtie nanoantenna,
and it was verified by examining the phase of the electric field in
the polarization direction.
The surface plasmon resonances of gold bowtie nanoring antenna arrays were simulated using the finitedifference time-domain method in the present study. Both the local field and transmission spectra of bowtie nanoring antennas with various nanohole sizes were examined to find the optimum conditions to induce the greatest local electromagnetic field enhancement and sensitivity compared to the solid bowtie antenna. With the optimized nanohole size of bowtie nanoring, the local electromagnetic field enhancement, the decay length of the electric field, and the bulk sensitivity were increased as high as about 73, 349, and 63 %, respectively, compared to the solid bowtie antenna. The electric field enhancement profile and the charge distribution of the bowtie nanoring antennas were studied to characterize the coupled plasmon configurations, and it was used to explore the mechanism of enhanced sensitivity and resonance-wavelength shift of bowtie nanoring array with different surrounding dielectric media. This highly localized electromagnetic field enhancement and sensitive bowtie nanoring array system can be applied in the field of surface-enhanced Raman scattering and bio-sensing.
Metallic glasses (MGs) are a class of amorphous alloys in contrast with crystalline metals and provide a challenge of engineering applications for unique structure and properties. However, plasmonic applications remain a virgin area for MGs. In this work, we discovered that certain compositions of gold-based MGs possessed negative dielectric constants and could be used as plasmonic materials. Furthermore, with a low glass-transition temperature of goldbased thin-film MGs (TFMGs), we were able to fabricate large dimensions of nanostructures using an inexpensive thermal imprint method in air instead of other costly lithography methods. We performed both measurements and simulations to demonstrate that our designed nanostructures were suitable for surface-enhanced Raman scattering (SERS) applications. In addition, in the absence of grain boundaries in amorphous TFMGs, damping due to increased scattering at grain boundaries does not occur, and SERS could be improved. Also, compared to regular SERS substrates of textured Si with deposited Au films, imprinted Au-based TFMGs provided complete coverage of Si underneath, and the vibrational signal of Si lattice would not show in Raman spectra to possibly overlap signals of analyte and decrease the accuracy of sensing. Our results suggested new avenues for applying a low-cost and high-throughput method on TFMGs to fabricate large dimensions of substrates for plasmonic applications.
Corner radius is a concept to approximate the fabrication limitation due to the effective beam broadening at the corner in using electron-beam lithography. The purpose of the present study is to investigate the effects of corner radius on the electromagnetic field enhancement and resonance wavelength for three periodic polygon dimers of bowtie, twin square, and twin pentagon. The enhancement factor of surface-enhanced Raman spectroscopy due to the localized surface plasmon resonances in fabricated gold bowtie nanostructures was investigated using both Raman spectroscopy and finite-difference time-domain simulations. The simulated enhancement factor versus corner radius relation was in agreement with measurements and it could be fitted by a power-law relation. In addition, the resonance wavelength showed blue shift with the increasing corner radius because of the distribution of concentrated charges in a larger area. For different polygons, the corner radius instead of the tip angle is the dominant factor of the electromagnetic field enhancement because the surface charges tend to localize at the corner. Greater enhancements can be obtained by having both the smaller gap and sharper corner although the corner radius effect on intensity enhancement is less than the gap size effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.