Optical metrology is one of the key technologies in today's manufacturing industry. In this article, we provide an insight into optical measurement technologies for precision positioning and quality assessment in today's manufacturing industry. First, some optical measurement technologies for precision positioning are explained, mainly focusing on those with a multi-axis positioning system composed of linear slides, often employed in machine tools or measuring instruments. Some optical measurement technologies for the quality assessment of products are then reviewed, focusing on technologies for form measurement of products with a large metric structure, from a telescope mirror to a nanometric structure such as a semiconductor electrode. Furthermore, we also review the state-of-the-art optical technique that has attracted attention in recent years, optical coherence tomography for the non-destructive inspection of the internal structures of a fabricated component, as well as super-resolution techniques for improving the lateral resolution of optical imaging beyond the diffraction limit of light. This review article provides insights into current and future technologies for optical measurement in the manufacturing industry, which are expected to become even more important to meet the industry's continuing requirements for high-precision and high-efficiency machining.
A novel 3-D edge detection methodology is developed to resolve the edge ambiguity problem encountered in 3-D optical surface profilometry employing digital image correlation (DIC). DIC has been surged as a full-field measurement technique for in-plane and out-of-plane dynamic mechanical structure analyses. However, up to date, one of the key issues in DIC is still remained in boundary edge detection since a surface edge is not detectable between two discrete neighboring height jumps due to optical diffraction. Generally, it is common to observe undesirable noisy measured data along surface edges in traditional DIC-based surface 3-D profilometry. To resolve this, a novel random speckle images processing method is established by proposing a new algorithm by employing the multiple symmetric partial template model to determine best edge location with accurate height reconstruction. A theoretical simulation on a pre-calibrated circle target was performed to verify the feasibility of the methodology. Some experiments on real industrial objects having various surface reflective characteristics were implemented to verify its capability on accurate detection of industrial objects having discrete surface edges. From its preliminary evaluation on measurement accuracy, it is found that the maximum measured error on critical dimension can be controlled within less than 6.0% of the overall measuring range while one standard deviation can be kept within less than 1.2%.
For three-dimensional (3-D) mapping, so far, 3-D laser scanners and stereo camera systems are used widely due to their high measurement range and accuracy. For stereo camera systems, establishing corresponding point pairs between two images is one crucial step for reconstructing depth information. However, mapping approaches using laser scanners are still restricted by a serious constraint by accurate image registration and mapping. In recent years, time-of-flight (ToF) cameras have been used for mapping tasks in providing high frame rates while preserving a compact size, but lack in measurement precision and robustness. To address the current technological bottleneck, this article presents a 3-D mapping method which employs an RGB-D camera for 3-D data acquisition and then applies the RGB-D features alignment (RGBD-FA) for data registration. Experimental results show the feasibility and robustness of applying the proposed approach for real-time 3-D mapping for large-scale indoor environments.
As is well known, the phase-shifting interferometry techniques allow to reach longitudinal resolution to ~ 0.1 nm, but the value of lateral resolution remains at the level of ~ 1 mm. For providing of high lateral resolution of linear measurements in the interference microscope profilometer it was proposed to use a position detection sensor of sharp edge. Principle of sensor’s measurement is based on registration of laser spot intensity scattered by the measurement sample surface under displacement of sample in the lateral direction. The paper shows the prototype scheme of measurement system containing the Linnik interferometer used for surface nanorelief measurement and a position detection module of sharp edge. Measurement process and experimental results are presented. The combining of measurement results performed by the Linnik interferometer and a position detection sensor of sharp edge can allow us to precisely (better then diffraction limit) define the position of sharp edge on the reconstructed surface nanorelief.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.