We present an optical interference system nanoprofiler MNP-1 designed for high-precision noncontact measurement of surface relief with subnanometer resolution (root mean square of measured values), based on partial scanning of interference signal. The paper describes the construction of the measurement system with Linnik interferometer and the algorithm for nanorelief surface reconstruction. Experimental measurement results of silicon sample with profile height of surface structure of one interatomic distance obtained by MNP-1 are shown. It was proposed to use an atomically smooth surface as the reference mirror in the interferometer MNP-1 that allowed us to measure monatomic steps of the presented silicon sample. Monatomic steps of 0.31 nm in height on silicon (111) surface were measured with resolution up to 5 pm.
Modern industry and science require novel 3D optical measuring systems and laser technologies with micro/nanometer resolution for solving actual problems. Such systems, including the 3D dimensional inspection of ceramic parts for electrotechnical industry, laser inspection of wheel pair diagnostic for running trains and 3D superresolution low-coherent micro-/nanoprofilometers are presented. The newest results in the field of laser technologies for high-precision synthesis of microstructures by updated image generator using the semiconductor laser are given. The measuring systems and the laser image generator developed and produced by TDI SIE and IAE SB RAS have been tested by customers and used in different branches of industry and science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.