Neuroimaging studies have demonstrated the critical role of the insula in pain pathways and its close relation with the perceived intensity of nociceptive stimuli. We aimed to identify the structural and functional characteristics of the insula during periovulatory phase in women with primary dysmenorrhea (PDM), and further investigate its association with the intensity of perceived pain during menstruation. Optimized voxel-based morphometry and functional connectivity (FC) analyses were applied by using 3-dimensional T1-weighted and resting functional magnetic resonance imaging (fMRI) in 36 patients at the peri-ovulation phase and 29 age-, education-, and gender-matched healthy controls (HC). A visual analogue scale (VAS) was used to examine the intensity of the abdominal pain at periovulation and menstruation. In our results, PDM patients had significant higher VAS-rating during menstruaion than periovulation. Compared with the HC, PDM patients had lower gray matter density in the left anterior insula (aINS). Taken the left aINS as a seed region, we further found hypoconnectivity between aINS and medial prefrontal cortex (mPFC), which showed negative relation with the VAS during menstruation. As the aINS is a key site of the salience network (SN) and the mPFC is a critical region in the default mode network (DMN), it's implicated a trait-related central-alteration that communications between pain attention and perception networks were disrupted without the ongoing menstrual pain. Moreover, result of correlation analysis, at least in part, suggested a possible role of altered FC (pain-free period) in predicting pain perception (menstruation).
Purpose: Spinal bronchogenic cysts (SBCs) are rare congenital lesions. The clinical and imaging characteristics and treatment of SBCs are not well known. We studied three cases of SBCs retrospectively, which were registered in our department and analyzed eight case reports which were all published in English, focusing on providing a deeper knowledge of SBCs. Methods: Three patients with SBCs registered in our department were retrospectively reviewed. Eight reported SBCs cases published from 1992 to 2015 were enrolled in our study. Imaging diagnosis was confirmed by computed tomography (CT), MRI, and computed tomography angiography (CTA). All of our patients and reviewed cases had undergone surgical resection and the final diagnosis was made by pathological examination. Results: Five lesions were located at the cervical spinal canal. Most patients presented with pain in the limbs and back, which might be related to compression of the spinal cord and the reduced blood supply of the anterior spinal artery. The signal intensity on MRI was correlated with cystic fluid traits to a large extent. Seven lesions were partially removed because of the adhesions to the nearby spinal cord. All reported cases had no recurrence in the later follow-up. Conclusions: SBCs can occur anywhere in the spinal canal, but they are more likely to present at the cervical canal and might be present along with some developmental malformations of the spine. We emphasize the role of CT and MRI findings in the disease diagnosis. It is recommended that the lesion should be removed as completely as possible.
Background Noninvasive preoperative prediction of histological grading is essential for clinical management of cerebral glioma. Purpose This study aimed to investigate the association between the image quality assessment of 1H magnetic resonance spectroscopy and accurate grading of glioma. Materials and Methods 98 glioma patients confirmed by pathology were retrospectively recruited in this single-center study. All patients underwent 1H-MRS examination at 3.0T before surgery. According to WHO standards, all cases were divided into two groups: low-grade glioma (grade I and II, 48 cases) and high-grade glioma (grades III and IV, 50 cases). The metabolite ratios in both grades were calculated before and after image quality assessment. The area under the receiver operating characteristic (ROC) curve was used to evaluate the capacity of each ratio in glioma grading. Results The Cho/Cr, Cho/NAA and NAA/Cr metabolite ratios had certain differences in each glioma group before and after MRS image quality assessment. In the low-grade glioma group, there was a dramatic difference in the Cho/Cr ratio before and after image quality assessment ( p = 0.011). After MRS image quality assessment, the accuracy of glioma grading was significantly improved. The Cho/Cr ratio with 83.3% sensitivity and 93.7% specificity is the best index of glioma grading, with the optimal cutoff value of the Cho/Cr ratio being 3.72. Conclusion The image quality of MRS does affect the metabolite ratios and the results of glioma grading. MRS image quality assessment can observably improve the accuracy rate of glioma grading. The Cho/Cr ratio has the best diagnostic performance in differentiating high-grade from low-grade glioma.
Introduction: Hypothyroidism leads to impaired white matter (WM) integrity, associated with cognitive/neuropsychiatric dysfunction. However, the specific segmental abnormalities of the fibers remain unexplored. Therefore, this study aimed to investigate whether the damage of the WM is limited to a specific segment or the entire bundle via diffusion metrics using automated fiber quantification. Methods: A cross-sectional study was conducted on 31 hypothyroid patients and 28 healthy controls. Thyroid-related hormone levels, cognitive/neuropsychiatric function, and diffusion tensor image data were collected and analyzed. Correlation and random forest analyses were also performed. Results: The mean fractional anisotropy (FA) values were reduced at the fiber tract level. The mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) values were increased in several fiber tracts, i.e., cingulum cingulate (CC), anterior forceps of corpus callosum (CCF_A). Significant correlations were found between cognitive function and diffusion indicators such as the FA value of the left corticospinal tract and arcuate fasciculus (AF), the MD value of left CC, the RD value of left AF, the AD value of left CC, and CCF_A. The widespread microstructure disruption was spread on multiple specific segments of different tracts at the point-wise level. The random forest revealed that the accuracy of recognizing hypothyroid patients was 82.5%, with the anterior component of CCF_A having the most significant contribution. Conclusion: WM microstructural integrity impairments were found in multi-segments of the multiple fiber bundles in hypothyroidism, which might be a potential mechanism of the underlying neurocognitive decline and cerebral impairment. The CCF_A might serve as a neuro biomarker for early warning of cerebral impairment in hypothyroidism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.