This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.
This study presents a low-power multi-lead wearable electrocardiogram (ECG) signal sensor system design that can simultaneously acquire the electrocardiograms from three leads, I, II, and V1. The sensor system includes two parts, an ECG test clothing with five electrode patches and an acquisition device. Compared with the traditional 12-lead wired ECG detection instrument, which limits patient mobility and needs medical staff assistance to acquire the ECG signal, the proposed vest-type ECG acquisition system is very comfortable and easy to use by patients themselves anytime and anywhere, especially for the elderly. The proposed study incorporates three methods to reduce the power consumption of the system by optimizing the micro control unit (MCU) working mode, adjusting the radio frequency (RF) parameters, and compressing the transmitted data. In addition, Huffman lossless coding is used to compress the transmitted data in order to increase the sampling rate of the acquisition system. It makes the whole system operate continuously for a long period of time and acquire abundant ECG information, which is helpful for clinical diagnosis. Finally, a series of tests were performed on the designed wearable ECG device. The results have demonstrated that the multi-lead wearable ECG device can collect, process, and transmit ECG data through Bluetooth technology. The ECG waveforms collected by the device are clear, complete, and can be displayed in real-time on a mobile phone. The sampling rate of the proposed wearable sensor system is 250 Hz per lead, which is dependent on the lossless compression scheme. The device achieves a compression ratio of 2.31. By implementing a low power design on the device, the resulting overall operational current of the device is reduced by 37.6% to 9.87 mA under a supply voltage of 2.1 V. The proposed vest-type multi-lead ECG acquisition device can be easily employed by medical staff for clinical diagnosis and is a suitable wearable device in monitoring and nursing the off-ward patients.
A 1-V quadrature voltage-controlled oscillator (QVCO) using subharmonic and injection-locked techniques (SHIL-QVCO) is presented. Instead of using the traditional transformer-coupling LC tank with a large area to implement the quadrature output, we use a frequency-doubled differential pair with an injection-locked method. The proposed QVCO is implemented with a TSMC 0.18-µm 1P6M CMOS process having a 1.4 × 0.67 mm 2 chip area. This QVCO has the advantages of low phase noise and low power consumption. Experimental results show that the QVCO has a phase noise of −126 dBc/Hz at an offset frequency of 1 MHz and a power consumption of 4.9 mW to achieve a 186 figure of merit. Moreover, a tuning frequency between 2.17 and 2.52 GHz can be obtained with a tuning voltage range of 0-1 V for the IEEE 802.15.4.Index Terms-Frequency doubled, injection locked, oscillator, quadrature, radio-frequency complementary metal-oxidesemiconductor (RF CMOS), subharmonic, voltage-controlled oscillator (VCO).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.