Heat stress (HS) influences the growth and development of organisms. Thus, a comprehensive understanding of how organisms sense HS and respond to it is required. Ganoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system due to the complete sequencing of its genome, transgenic systems, and reliable reverse genetic tools. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced the accumulation of ganoderic acid biosynthesis and heat shock proteins (HSPs) in G. lucidum. Our data showed that HS induced a significant increase in cytosolic Ca 2؉ concentration. Further evidence showed that Ca 2؉ might be a factor in the HS-mediated regulation of hyphal branching, ganoderic acid (GA) biosynthesis, and the accumulation of HSPs. Our results further showed that the calcium-permeable channel gene (cch)-silenced and phosphoinositide-specific phospholipase gene (plc)-silenced strains reduced the HS-induced increase in HSP expression compared with that observed for the wild type (WT). This study demonstrates that cytosolic Ca 2؉ participates in heat shock signal transduction and regulates downstream events in filamentous fungi.
IMPORTANCEGanoderma lucidum, a higher basidiomycete with bioactive secondary metabolites, has become a potential model system for evaluating how environmental factors regulate the development and secondary metabolism of basidiomycetes. Heat stress (HS) is an important environmental challenge. In this study, we found that HS inhibited mycelium growth, reduced hyphal branching, and induced HSP expression and ganoderic acid biosynthesis in G. lucidum. Further evidence showed that Ca 2؉ might be a factor in the HS-mediated regulation of hyphal branching, GA biosynthesis, and the accumulation of HSPs. This study demonstrates that cytosolic Ca 2؉ participates in heat shock signal transduction and regulates downstream events in filamentous fungi. Our research offers a new way to understand the mechanism underlying the physiological and metabolic responses to other environmental factors in G. lucidum. This research may also provide the basis for heat shock signal transduction studies of other fungi.
Ganoderma lucidum, a traditional precious medicinal mushroom, has been commonly used throughout China and Southeast Asia for many centuries as a home remedy for treating minor disorders and promoting vitality and longevity (1). Modern pharmacological and clinical research has demonstrated that G. lucidum has significant antitumor, antiviral, antihypertensive, and immunomodulatory activities (2, 3). These pharmaceutical activities come from the bioactive compounds of G. lucidum. In recent years, many of these biologically useful compounds, including ganoderic acids (GAs) and polysaccharides, have been isolated and characterized in G. lucidum (4,5). Ganoderic acids, also called triterpenoids, are one of the major secondary metabolites with pharmacological activity and are also known to be an important medicinal i...