Increased process variability presents a major challenge for future SRAM scaling. Fast and accurate validation of SRAM read stability and writeability margins is crucial for estimating yield in large SRAM arrays. Conventional SRAM read/write metrics are characterized through test structures that are able to provide limited hardware measurement data and cannot be used to investigate cell bit fails in functional SRAM arrays. This work presents a method for large-scale characterization of read stability and writeability in functional SRAM arrays using direct bit-line measurements. A test chip is implemented in a 45 nm CMOS process. Large-scale SRAM read/write metrics are measured and compared against conventional SRAM stability metrics. Results show excellent correlation to conventional SRAM read/write metrics as well as V MIN measurements near failure.
Abstract-A test-chip in a low-power 45 nm technology, featuring uniaxial strained-Si, has been built to study variability in CMOS circuits. Systematic layout-induced variation, die-to-die (D2D), wafer-to-wafer (W2W) and within-die (WID) variability has been measured over multiple wafers, analyzed and attributed to likely causes in the manufacturing process. Delay is characterized using an array of ring oscillators and transistor leakage current is measured with an on-chip ADC. The key results link systematic layout-dependent and die-to-die variability as being caused by gate patterning and material strain. In comparison to a previous 90 nm experiment, gate proximity now contributes less to frequency variability, causing a 2% change in overall performance, while strain has increased its contribution to about 5% of the overall performance.
Abstract-A test-chip in a low-power 45 nm technology, featuring uniaxial strained-Si, has been built to study variability in CMOS circuits. Systematic layout-induced variation, die-to-die (D2D), wafer-to-wafer (W2W) and within-die (WID) variability has been measured over multiple wafers, analyzed and attributed to likely causes in the manufacturing process. Delay is characterized using an array of ring oscillators and transistor leakage current is measured with an on-chip ADC. The key results link systematic layout-dependent and die-to-die variability as being caused by gate patterning and material strain. In comparison to a previous 90 nm experiment, gate proximity now contributes less to frequency variability, causing a 2% change in overall performance, while strain has increased its contribution to about 5% of the overall performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.