Endometriosis (EMS) is a disease that shows immune dysfunction and chronic inflammation characteristics, suggesting a role of complement system in its pathophysiology. To find out the hub genes and pathways involved in the pathogenesis of EMs, three raw microarray datasets were recruited from the Gene Expression Omnibus database (GEO). Then, a series of bioinformatics technologies including gene ontology (GO), Hallmark pathway enrichment, protein–protein interaction (PPI) network and gene co-expression correlation analysis were performed to identify hub genes. The hub genes were further verified by the Real-time quantitative polymerase chain reaction (RT-PCR) and Western Blot (WB). We identified 129 differentially expressed genes (DEGs) in EMs, of which 78 were up-regulated and 51 were down-regulated. Through GO functional enrichment analysis, we found that the DEGs are mainly enriched in cell adhesion, extracellular matrix remodeling, chemokine regulation, angiogenesis regulation, epithelial cell proliferation, et al. In Hallmark pathway enrichment analysis, coagulation pathway showed great significance and the terms in which included the central complement factors. Moreover, the genes were dominating in PPI network. Combined co-expression analysis with experimental verification, we found that the up-regulated expression of complement (C1S, C1QA, C1R, and C3) was positively related to tissue factor (TF) in EMs. In this study, we discovered the over expression complement and the positive correlation between complement and TF in EMs, which suggested that interaction of complement and coagulation system may play a role within the pathophysiology of EMS.
Repopulation of residual tumor cells impedes curative radiotherapy, yet the mechanism is not fully understood. It is recently appreciated that cancer cells adopt a transient persistence to survive the stress of chemo‐ or targeted therapy and facilitate eventual relapse. Here, it is shown that cancer cells likewise enter a “radiation‐tolerant persister” (RTP) state to evade radiation pressure in vitro and in vivo. RTP cells are characterized by enlarged cell size with complex karyotype, activated type I interferon pathway and two gene patterns represented by CST3 and SNCG. RTP cells have the potential to regenerate progenies via viral budding‐like division, and type I interferon‐mediated antiviral signaling impaired progeny production. Depleting CST3 or SNCG does not attenuate the formation of RTP cells, but can suppress RTP cells budding with impaired tumor repopulation. Interestingly, progeny cells produced by RTP cells actively lose their aberrant chromosomal fragments and gradually recover back to a chromosomal constitution similar to their unirradiated parental cells. Collectively, this study reveals a novel mechanism of tumor repopulation, i.e., cancer cell populations employ a reversible radiation‐persistence by poly‐ and de‐polyploidization to survive radiotherapy and repopulate the tumor, providing a new therapeutic concept to improve outcome of patients receiving radiotherapy.
Background Little is known about how the obesogenic environment influences emotional states associated with glial responses and neuronal function. Here, we investigated glial reactivation and neuronal electrophysiological properties in emotion-related brain regions of high-fat diet (HFD) and ob/ob mice under chronic stress. Methods The glial reactivation and neuronal activities in emotion-related brain regions were analyzed among normal diet mice (ND), HFD mice, wild-type mice, and ob/ob mice. To further activate or inhibit astrocytes in medial prefrontal cortex (mPFC), we injected astrocytes specific Gq-AAV or Gi-AAV into mPFC and ongoing treated mice with CNO. Results The results showed that obesogenic factors per se had no significant effect on neuronal activities in emotion-related brain regions, or on behavioral performance. However, exposure to a chronic stressor profoundly reduced the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) in the mPFC; depressive-like behaviors were seen, accompanied by significant upregulation of astrocyte reactivation. We identified resilient and susceptible mice among chronic social defeat stress-exposed HFD mice. As expected, astrocyte reactivity was upregulated, while neuronal activity was depressed, in the mPFC of susceptible compared to resilient mice. Furthermore, activating astrocytes resulted in similar levels of neuronal activity and depressive-like behaviors between resilient and susceptible mice. Additionally, inhibiting astrocyte reactivation in the mPFC of HFD mice upregulated neuronal activities and inhibited depressive-like behaviors. Conclusions These observations indicate that obesogenic factors increase the risk of depression, and improve our understanding of the pathological relationship between obesity and depression. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.