Above-ground biomass (AGB) and the leaf area index (LAI) are important indicators for the assessment of crop growth, and are therefore important for agricultural management. Although improvements have been made in the monitoring of crop growth parameters using ground- and satellite-based sensors, the application of these technologies is limited by imaging difficulties, complex data processing, and low spatial resolution. Therefore, this study evaluated the use of hyperspectral indices, red-edge parameters, and their combination to estimate and map the distributions of AGB and LAI for various growth stages of winter wheat. A hyperspectral sensor mounted on an unmanned aerial vehicle was used to obtain vegetation indices and red-edge parameters, and stepwise regression (SWR) and partial least squares regression (PLSR) methods were used to accurately estimate the AGB and LAI based on these vegetation indices, red-edge parameters, and their combination. The results show that: (i) most of the studied vegetation indices and red-edge parameters are significantly highly correlated with AGB and LAI; (ii) overall, the correlations between vegetation indices and AGB and LAI, respectively, are stronger than those between red-edge parameters and AGB and LAI, respectively; (iii) Compared with the estimations using only vegetation indices or red-edge parameters, the estimation of AGB and LAI using a combination of vegetation indices and red-edge parameters is more accurate; and (iv) The estimations of AGB and LAI obtained using the PLSR method are superior to those obtained using the SWR method. Therefore, combining vegetation indices with red-edge parameters and using the PLSR method can improve the estimation of AGB and LAI.
Crop yield is related to national food security and economic performance, and it is therefore important to estimate this parameter quickly and accurately. In this work, we estimate the yield of winter wheat using the spectral indices (SIs), ground-measured plant height (H), and the plant height extracted from UAV-based hyperspectral images (HCSM) using three regression techniques, namely partial least squares regression (PLSR), an artificial neural network (ANN), and Random Forest (RF). The SIs, H, and HCSM were used as input values, and then the PLSR, ANN, and RF were trained using regression techniques. The three different regression techniques were used for modeling and verification to test the stability of the yield estimation. The results showed that: (1) HCSM is strongly correlated with H (R2 = 0.97); (2) of the regression techniques, the best yield prediction was obtained using PLSR, followed closely by ANN, while RF had the worst prediction performance; and (3) the best prediction results were obtained using PLSR and training using a combination of the SIs and HCSM as inputs (R2 = 0.77, RMSE = 648.90 kg/ha, NRMSE = 10.63%). Therefore, it can be concluded that PLSR allows the accurate estimation of crop yield from hyperspectral remote sensing data, and the combination of the SIs and HCSM allows the most accurate yield estimation. The results of this study indicate that the crop plant height extracted from UAV-based hyperspectral measurements can improve yield estimation, and that the comparative analysis of PLSR, ANN, and RF regression techniques can provide a reference for agricultural management.
Coal mining subsidence lakes are classic hydrologic characteristics created by underground coal mining and represent severe anthropogenic disturbances and environmental challenges. However, the assembly mechanisms and diversity of microbial communities shaped by such environments are poorly understood yet. In this study, we explored aquatic bacterial community diversity and ecological assembly processes in subsidence lakes during winter and summer using 16S rRNA gene sequencing. We observed that clear bacterial community structure was driven by seasonality more than by habitat, and the α-diversity and functional diversity of the bacterial community in summer were significantly higher than in winter (p < 0.001). Canonical correspondence analysis indicated that temperature and chlorophyll-a were the most crucial contributing factors influencing the community season variations in subsidence lakes. Specifically, temperature and chlorophyll-a explained 18.26 and 14.69% of the community season variation, respectively. The bacterial community variation was driven by deterministic processes in winter but dominated by stochastic processes in summer. Compared to winter, the network of bacterial communities in summer exhibited a higher average degree, modularity, and keystone taxa (hubs and connectors in a network), thereby forming a highly complex and stable community structure. These results illustrate the clear season heterogeneity of bacterial communities in subsidence lakes and provide new insights into revealing the effects of seasonal succession on microbial assembly processes in coal mining subsidence lake ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.